Herald: An Embedding Scheduler for Distributed
Embedding Model Training

Chaoliang Zeng Xiaodian Cheng Han Tian Hao Wang Kai Chen
Hong Kong University of Science and Technology

ABSTRACT

Given the ability to represent categorical features, embed-
ding models have gained great success on many internet
services. State-of-the-art training frameworks enable embed-
ding cache in GPU workers to benefit from hardware accel-
eration while supporting massive category representations
(embeddings) in the limited-capacity GPU device memory.
However, based on our measurements, naively adopting a
cache system in embedding model training leads to non-
negligible communications overhead between caches and
the global parameter server. We observe that many such
communications are avoidable, given the predictability and
sparsity natures of embedding cache accesses in distributed
training.

In this paper, we propose Herald, a runtime embedding
scheduler that significantly reduces the cache overhead by
leveraging information about the required embeddings in the
input samples and the locations of those embeddings. Herald
is composed of two key optimizations: It allocates samples in
a training batch to proper workers for a high cache hit rate
via a heuristic location-aware inputs partition mechanism,
and applies an on-demand synchronization strategy for a low
frequency of embedding synchronization. Preliminary simu-
lation results show that Herald can reduce cache overhead
by 39.3%-53.7% compared to a naive cache-enabled training
system across different realistic datasets.

CCS CONCEPTS

« Computing methodologies — Distributed algorithms;

KEYWORDS
Distributed Training, Embedding

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

APNet 2022, July 1-2, 2022, Fuzhou, China

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9748-3/22/07...$15.00
https://doi.org/10.1145/3542637.3542645

ACM Reference Format:

Chaoliang Zeng Xiaodian Cheng Han Tian Hao Wang Kai Chen
. 2022. Herald: An Embedding Scheduler for Distributed Embedding
Model Training. In 6th Asia-Pacific Workshop on Networking (APNet
2022), July 1-2, 2022, Fuzhou, China. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3542637.3542645

1 INTRODUCTION

Deep learning models with embedding technique [4] are an
important class of machine learning algorithms that mod-
els categorical features (e.g., words and product properties)
with continuous semantic embedding vectors (or embeddings
for short). These embedding models enable a wide range of
internet services, e.g., information retrieval [12, 15], recom-
mendation system [6, 7, 21], and natural language process-
ing [11, 28, 30], consuming significant infrastructure capacity
and compute cycles across production datacenters [24].

However, given a large mismatch between the limited
memory capacity provided by a GPU and the memory re-
quirement (tens of GBs to TBs [22, 31-34]) of embeddings,
training embedding models with GPU acceleration is chal-
lenging. Hence, a recent line of work [3, 23] proposes cache-
enabled training frameworks, which adopt the parameter
server (PS) [20] framework to maintain globally shared em-
beddings and accelerate the embedding lookup operations
by caching the hot embedding in GPU memory locally. De-
spite being promising, naively adopting a cache system in
the distributed embedding model training still suffers from
significant communications overhead between caches and
PS. These communications are bidirectional, including cache
pull when a cache does not hit the required embedding with
the latest version?, and cache push when a cache evicts or
synchronizes an updated embedding.

Existing work optimizes the above cache overhead with
extra limitations or model accuracy degradation. FAE [3]
reduces the number of cache pull by intentionally training
hot inputs that contain entirely hot embeddings, which re-
quires sampling on the dataset to identify the hot embeddings
and hot inputs. When training a large volume of streaming
samples, pre-processing the dataset is difficult, if not impos-
sible. HET [23] mitigates the overhead of both cache pull
and cache push by applying a staleness-tolerant embedding

!n the rest of the paper, we refer to hitting the latest version of an embedding
in the cache as a cache hit for short.


https://doi.org/10.1145/3542637.3542645
https://doi.org/10.1145/3542637.3542645

APNet 2022, July 1-2, 2022, Fuzhou, China

update method. Both solutions deviate from the original
training process and do not provide any theoretical guaran-
tee of model accuracy. However, model accuracy is important
in production. For example, an order of 0.1% model accuracy
loss may be intolerable in Facebook recommendations [2].
Therefore, synchronous training without a bias on training
samples is widely incorporated into large-scale deep learning
training systems [24].

To reduce the cache overhead without compromising model
accuracy, we observe two critical characteristics of embed-
ding cache accesses during the embedding model training:
predictability and sparsity. Specifically, since the embeddings
required by training samples and the current cache snap-
shot of each worker are visible before the computation, the
incoming cache accesses and their results (hit or not) are
predictable under a partition of batch inputs. Moreover, most
in-cache embeddings are sparse enough that the number of
training samples containing a specific embedding is less than
the total number of training samples allocated to a worker
in a typical distributed training setting. These two character-
istics indicate that it has the potential to train an embedding
in a fixed worker to increase the cache hit rate and avoid
unnecessary cache updates.

Based on the above observations, we believe that a domain-
specific training scheduler should be explored for efficient
embedding model training. Such a scheduler should fully
leverage information, including the required embeddings
of input samples and the locations of those embeddings, to
reduce the cache overhead. To this end, we propose Herald,
an embedding scheduler for real-time batch inputs parti-
tions and cache update decisions. Herald consists of two
key components: 1) a heuristic location-aware inputs parti-
tion mechanism that allocates samples in a training batch
to proper workers for a high cache hit rate, and 2) an on-
demand synchronization strategy for a low frequency of
embedding synchronization. These two optimizations work
together to reduce embedding communications. Our theo-
retical analysis proves that accelerating embedding model
training with Herald can preserve the model consistency and
hence the same model accuracy as synchronous training.

Our preliminary simulation results with realistic datasets
show that Herald can reduce the cache overhead by 39.3%-
53.7% compared to a naive cache-enabled training system.

2 BACKGROUND & MOTIVATION

2.1 Overview of Embedding Models

The left part of Figure 1 demonstrates a typical embedding
model architecture. The training samples of an embedding
model contain dense continuous features and sparse cate-
gorical features. An embedding model leverages embedding
tables to project sparse features into dense representations.

C. Zeng, et al.

Neural network Emb table
(PS)
Emb table (cache) C;ii“.f
Dense | m—————1-____ >
features -———-
Cache

1 .

| Input H Sparse features |

_

Figure 1: A typical architecture of cache-enabled em-
bedding models.

Specifically, each embedding lookup may be interpreted as
using a one-hot vector, where only the i-th position is 1 for
the lookup of the i-th category, to obtain the correspond-
ing row dense vector (embedding) of the embedding table.
All embeddings of sparse features will be further reduced
into a single vector and fed into the neural network along
with dense features. In a typical embedding model, the em-
bedding table contributes a large portion of model trainable
parameters.

Traditional training frameworks [1, 5, 17, 25] are not well-
suited to embedding model training, as they pay little at-
tention to the embedding table. With the scaling up of em-
bedding table size, storing the whole embedding table to
a (GPU) worker for every use becomes difficult. Therefore,
state-of-the-art training frameworks for embedding models
manage embeddings on dedicated parameter servers [2, 16],
and leverage embedding cache to reduce the communication
of remote table lookups [3, 23], as shown in Figure 1.

2.2 A Naive Cache System Is Not Enough

However, we find that embedding communication raised
by embedding cache still contributes significant overhead
compared to the training computation. We study the cache
pull/push behaviors with a simulation on Criteo Kaggle
dataset [9] to show this problem. More experiment settings
can be found in §4.

The cache pull/push can be caused by either cache miss

or cache update. When there is a cache miss, the cache will
pull the required embedding and push an evicted embedding
if necessary. For cache update, the cache will push the em-
bedding updated by itself and pull the required embedding
with the latest version updated by other caches.
Cache overhead matters. Figure 2 demonstrates the nor-
malized cache overhead (the ratio of the embedding com-
munications time to the model computation time) across
different network settings and embedding sizes. It shows a
similar trend between WDL [8] and DFM [14] models.

Overall, cache pull/push consume 0.29x-3.72X (0.25X-2.92X)
computation time in WDL (DFM) model, where cache pull
and cache push contribute the similar overhead (less than



Herald

B Cache pull
w77 Cache push

NN\

N\
B\

Normalized overhead
N

10G 25G 40G 10G 25G 40G 10G

N
5
@
IS
S
@

256 512
Embedding dimensions

(a) WDL.

APNet 2022, July 1-2, 2022, Fuzhou, China

4
B Cache pull
mzz Cache push

7

s v,

0 10G 25G 40G 10G 25G 40G

Normal|zeg overhead
B\

B\X
—\\
N\

-
°
@

25G 40G
512

256
Embedding dimensions

(b) DEM.

Figure 2: Normalized cache overhead in a naive cache system.

20% variance). When increasing individual embedding size,
we have the following two observations. 1) Increasing em-
bedding size does not significantly affect the total number of
cache pull/push. We further break down the cache overhead
and observe that cache updates contribute 78.5%-85.9% em-
bedding communications. 2) When increasing the embedding
size, the time for a single embedding communication scales
linearly, while the model computation time increases sub-
linearly. As a result, the cache overhead is more serious in a
large embedding size. Increasing the network bandwidth can
mitigate the cache overhead, but network bandwidth incre-
ments in datacenters (4X-10X increments over the past few
years) fail to catch up with GPU evolution (10x-20x faster
computation from Nvidia V100 released in 2017 to Nvidia
A100 released in 2020). The normalized cache overhead will
further increase in this hardware evolution trend.

2.3 Opportunities and Observations

The cache overhead results from embedding communications
in per-iteration embedding accesses and updates. Instead of
tapping the performance limit of embedding communica-
tions [13, 19, 26], we take one step back and ask: Can we
reduce the number of cache pull/push during the training?
To give a positive answer, we first go through opportunities
to reduce embedding communications during the training,
and discuss the potential to adopt these optimizations based
on two characteristics of embedding cache accesses, i.e., pre-
dictability and sparsity.

In the forward propagation, a required embedding hits the
cache can prevent cache pull and potential cache push due to
a cache eviction caused by inserting new embedding. Mean-
while, accessing an embedding in the forward propagation
will incur a corresponding update in the backward propa-
gation. However, synchronizing every embedding update is
unnecessary, even in synchronous training. The reason is
that an embedding is related to a sparse feature, and this
feature is not necessarily trained in the following iterations

by other workers. It may happen in two ways: 1) this fea-
ture does not appear in the later training samples, or 2) this
feature is only trained by the same worker. In other words,
the updated embeddings can only be synchronized when
they are required by other workers in the following training.
Putting all this together, we can reduce embedding communi-
cations by serving as much as possible in-cache embeddings
and performing on-demand synchronizations.

We have the potential to leverage the above optimization

opportunities based on the following two observations.
Predictability. There are two prerequisites for the above
optimizations: knowing current cache snapshots as well as
predicting and determining future embedding accesses. For-
tunately, both of them are achievable. Since modern training
frameworks decouple the training computation and the in-
put preparation, which is performed in a data loader, we
can foresee and decide possible embedding accesses as early
as input generation for each worker. Meanwhile, maintain-
ing cache snapshots in the data loader is trivial. Therefore,
a designed data loader with an embedding scheduler can
allocate input samples to workers based on their in-cache
embeddings and determine embedding dependencies among
iterations for on-demand synchronizations.
Sparsity. We can reduce possibly maximal embedding com-
munications from the above optimizations, when the training
workload of any of the in-cache embeddings can be accepted
by only one worker, i.e., the number of training samples con-
taining this embedding is less than the total number of sam-
ples trained by a worker during the whole training cycle. To
measure the sparsity of the in-cache embeddings, we make
profiling on real-world datasets. We consider embeddings
with a frequency larger than 107> as cached and measure the
number of sparse embeddings whose workload can be served
by a single worker. At typical scales of training clusters (8-
120 workers), Criteo Kaggle dataset contains 99.70%-99.96%
of in-cache embeddings that have the potential to be trained
in only one worker, and we observe similar results in other
datasets (e.g., Avazu [18] and Criteo Search [27]).



APNet 2022, July 1-2, 2022, Fuzhou, China

I Parameter Server I

Iter x On-demand ®, lterx
Push 1 Synchronization +\N0 Push
Worker 1 Worker 2
Cache Cache
=y I_I_I_I_|4 AR

1 1 1

%,
Iter x 1 |}-%, 5 Iter x
e, | B O
lter x+1 e Iter x+1
Comm Plan Input Comm Plan
Batch x+2
Data loader Sparse features
| Dense features
Location-aware - & label
Cache Snapshot 2 Inputs Partition

Figure 3: Herald accelerates embedding model training
with a location-aware inputs partition mechanism and
an on-demand synchronization strategy.

3 DESIGN

3.1 Overview

Based on the above ideas, we design a real-time embedding
scheduler called Herald to accelerate cache-enabled embed-
ding model training frameworks, as shown in Figure 3. The
key ideas of Herald are 1) a location-aware inputs partition
mechanism and 2) an on-demand embedding synchroniza-
tion strategy for updated embeddings followed by communi-
cation plans as explained below.

The inputs partition mechanism in the data loader will al-
locate the incoming batch inputs to proper workers based on
current embedding locations (detailed in §3.2) and generate
embedding dependencies of this partition. An embedding
dependency appears when an embedding with the latest
version is cached on a worker and there is another worker
assigned to train this embedding in this iteration. Therefore,
the worker caching the latest embedding should synchronize
this embedding to PS before this iteration training begins. In
this way, embedding dependencies of this iteration become
communication plans of the last iteration. In every iteration,
a worker receives both training samples and a communica-
tion plan at the beginning of computation, and synchronizes
the listed embedding in the communication plan during the
backward propagation. To generate communication plans
of an iteration, we need to partition the latter batch inputs
before this iteration starts, which is possible as prefetching
the training samples is common in the training process. To
realize the above location-aware scheduling, the data loader
maintains the cache snapshot of each worker to provide
information on embedding locations.

C. Zeng, et al.

Algorithm 1: Location-aware Inputs Partition

input :Batch samples (Inputs), worker list
(Workers), and current cache snapshots
output:Inputs partition, communication plans, and
updated cache snapshots
for i in Inputs do
for w in Workers do
‘ score(i ) = |cache(w) N embs(i)l;
end
end
Init all workers as available;
for i in Inputs do
Find worker w with the largest score among
available workers;
9 Allocate i to w;
10 if workload(w) == size(Inputs)/size(Workers) then
11 ‘ Mark w as unavailable;

12 end

13 end

14 for w in Workers do

15 comm_plan,, =

embs(Inputs — alloc(w)) N cache(w);

16 end
17 Update cache snapshots based on the partition result;

Herald only controls the embedding update by pushing
the latest embedding to PS. We rely on the cache consistency
protocol in existing cache systems to pull the update from
PS on individual worker cache.

3.2 Location-aware Inputs Partition

Since a brute-force search to find the optimal partition solu-
tion with minimal cache overhead is unrealistic in real-time,
we design a heuristic partition algorithm as shown in Algo-
rithm 1.

In Algorithm 1, we first measure a score between every
input sample and worker (Line 3). The score is defined as
the number of embeddings that exist in the worker cache
(with the latest version) and are required by the input sample
simultaneously. Then, we allocate each input to the worker
with the highest score (Line 8-9) while ensuring evenly dis-
tributed workloads among workers (Line 10-12). Given the
partition result, we generate communication plans, i.e., a
list of embeddings to be synchronized, for the last iteration
with a basic idea that as long as the worker cache contains
the latest embeddings required by other workers, this em-
bedding is inserted into the worker’s communication plan
(Line 15). As discussed in §3.1, communication plans gener-
ated in batch i + 1 can control the synchronization behavior



Herald

in iteration i with the inputs prefetching. Finally, we update
cache snapshots based on the partition result (Line 17).

3.3 Model Consistency Analysis

In this part, we show that the training process will not be
affected by choice of input partition algorithm (either a naive
partition or a location-aware partition) under bulk synchro-
nous parallelism (BSP). Considering a parameter optimizer
followed by stochastic gradient descent algorithm (SGD), the
gradient calculation for model weights w on a given batch
of n training samples is as follows:

1 JL(x;,
Vi = ;zyle,

(1)

ow

where x; is the i-th training sample of the batch, and L is
the loss function. Based on Equation 1, the gradient of the
batch is the sum of the individual gradient of each training
sample in the batch. Since the individual gradient depends
on sample features and current model weights, which are
synchronized before the gradient calculation for each itera-
tion under BSP, partitioning the batch into m mini-batches
take no effect on the gradient result:

1 OL(x;,w) 1

AL(x;;, w)
/ ijs
Lo, sy ln T,

J=1 ow @

where x;; is the j-th training sample in the i-th mini-batch
(worker). Therefore, any partition result generated by any
partition algorithm will preserve the same gradients in BSP,
and finally converge to the same model.

aw _;

4 PRELIMINARY RESULTS

In this section, we present the preliminary simulation results
for evaluating the performance improvement when applying
Herald. We first have a performance deep dive on Herald with
Criteo Kaggle dataset [9]. Then, we extend our simulation
to other representative datasets and show that Herald can
preserve the performance superiority.

Experiment settings. There are 8 LRU cache instances
(workers), each of which has a 1.6 GB capacity (10% of 16
GB, a typical memory size of GPU). The dataset is evenly
partitioned into these 8 cache instances, with a mini-batch
size of 128. In a naive cache-enable training system, the
batch samples are allocated workers sequentially. We record
cache push and cache pull behaviors to evaluate the cache
overhead. We measure the computation time of embedding
models on HET [23] with an Nvidia V100 GPU, where we
make all cache accesses hit to eliminate the embedding com-
munication overhead. The normalized overhead is measured

by the ratio of the embedding communications time, which

. T itted embeddi in byt
is calculated by ransmt EB::(;;i dtl}:lgs R OYe to the model

computation time, and embeddings use double data type.

APNet 2022, July 1-2, 2022, Fuzhou, China

15| mmm Niave = Niave
== Herald == Herald

0.0 %8 256 512 0T 5 512

8 256
Embedding dimensions Embedding dimensions

(a) WDL. (b) DFM.

-
o

°

Normalized overhead
o
@

Normalized overhead
o

Figure 4: Normalized cache overhead comparison in
25G network.

70% 70%r

. Niave . Niave
60% == Herald 60%| m== Herald
o 2
£ 50% % 50%
] |3
3 20% 5 40%
2 2
© 30% 0 30%
S <
® 20% 9 500
8 20% g20%
10% 10%
0% 128 256 512 0% 512

128 256
Embedding dimensions

(b) Cache push

Embedding dimensions

(a) Cache pull.
Figure 5: Performance breakdown.

Optimization Pull Push Overall
Naive 1 1 1
On-demand synchronizations 1 0.84 0.91
Location-aware input partition 0.52  0.85 0.69
Herald 0.52  0.42 0.46

Table 1: Breakdown of contribution by each optimiza-
tion (embedding dimensions = 128).

Overall improvement. In general, applying Herald can
reduce 51.5%-53.7% cache overhead. To illustrate the benefit
of such an overhead reduction from the model training per-
spective, Figure 4 shows the normalized cache overhead in
the 25G network. Herald can effectively reduce the normal-
ized cache overhead from 0.47-1.49 (0.40-1.17) to 0.22-0.72
(0.18-0.57) in WDL [8] (DFM [14]) model.

Performance breakdown. We decompose the cache over-
head into cache pull overhead and cache push overhead,
as shown in Figure 5. Figure 5a shows that Herald can ef-
fectively reduce the cache pull rate by 44.7%-48.2%, and in
Figure 5b, Herald improves the cache push by 57.1%-58.4%.
To figure out the reasoning behind these improvements, we
further break down the performance in terms of the contri-
bution by each optimization, as shown in Table 1. We find
that location-aware input partition contributes the major
improvements. For cache pull, location-aware input parti-
tion allows embeddings required by inputs most likely hits
caches. Meanwhile, the cache push performance is jointly
optimized by location-aware input partition and on-demand
synchronizations, where the designed partition mechanism
reduces embedding dependencies while on-demand synchro-
nizations make such dependencies reduction benefit to com-
munications reduction.



APNet 2022, July 1-2, 2022, Fuzhou, China

Herald overhead. To benefit embedding model training
in runtime with Herald, the time overhead of processing a
single batch in Herald must be smaller than the training time
of a batch, so that the overhead of Herald can be hidden
by the pipeline. To leverage the multi-core feature in the
CPU, we accelerate Herald by OpenMP [10] with no more
than 8 threads. We measure the average time consumption
of parallelized Herald to be less than 10 ms per batch (and
the brute-force search to be the order of minutes) on Intel(R)
Xeon(R) Gold 5115 CPU. Meanwhile, we measure a mini-
malist distributed training system consisting of two GPUs
connected via PCle, where WDL and DFM models take more
than 10 ms to train a batch. It indicates that Herald will not
be the bottleneck in embedding model training.
Performance on other datasets. We take an extended
evaluation with the same settings as Figure 4 on other real-
world datasets: Avazu [18] and Criteo Search [27]. Herald
can consistently reduce the cache overhead. It improves the
performance by 39.5%-42.7% and 39.3%-44.0% on Avazu and
Criteo Search datasets, respectively.

5 DISCUSSION AND FUTURE WORK

Optimization on cache replacement. The vision of Herald
is to let all individual embeddings fixed to a particular worker
for training, thus reducing the communication overhead. It
requires that an embedding is not only accessed by a fixed
worker (achieved by location-aware input partition), but
also not evicted from the worker cache. Although this paper
pays little attention to the cache replacement policy, it is
possible to make an optimized cache replacement decision
by considering the following embedding requirements in
later iterations.

Prefetching communication plan. In an iteration, work-
ers may execute different sizes of communication plans. This
kind of work imbalance will result in idle workers during syn-
chronization. To address this problem, workers transmitting
fewer embeddings can prefetch and execute the communica-
tion plans in later iterations. However, it requires additional
embedding dependency checking. As long as an embedding
is not trained within the current iteration to the iteration
of the checked communication plan, this embedding can be
synchronized as early as the current iteration. Based on this
idea, the data loader can re-schedule communication plans
to balance the communication workload among workers.
Point-to-point (P2P) embedding synchronization. In
this paper, we follow a distributed cache model as same as
HET [23], where each cache only communicates with PS. In
this cache model, an embedding synchronization requires
at least two steps, one cache push and one cache pull. We
can reduce the synchronization path by P2P synchroniza-
tion between two workers. Moreover, P2P embedding syn-
chronization can eliminate the potential network bottleneck

C. Zeng, et al.

caused by the PS architecture [29]. Herald can support P2P
embedding synchronization by introducing receiving com-
munication plans, which list the embeddings that workers
should receive in an iteration.

6 RELATED WORK

FAE [3] and HET [23] are two cache-enabled embedding
model training frameworks. In general, they leverage the
skewness feature of datasets to accelerate embedding ac-
cesses with high popularity, while Herald further identifies
the sparsity feature among those cached embeddings.

FAE maintains a uniform cache among all workers and
synchronizes all cached embeddings as dense weights in
every iteration. To reduce cache miss, FAE proposes a hot-
embedding aware data layout for dataset pre-processing to
identify both hot embeddings and hot inputs, which contain
only hot embeddings. Moreover, FAE determines whether
the training batch contains only hot inputs based on the
testing loss. On the contrary, Herald does not need the prior
knowledge of the hot embeddings before scheduling, and
does not intervene in the batch formation but intelligently
partitions a batch into mini-batch, which can preserve model
consistency.

HET applies a distributed cache model. To reduce cache
overhead, it supports staleness for both cache read and cache
write operations, which will harm the model accuracy. This
optimization is orthogonal to Herald. If the compromise on
the model performance is acceptable, Herald can benefit from
the same staleness operations to further reduce embedding
communications.

7 CONCLUSION

This paper presents Herald, a runtime embedding scheduler
for efficient cache-enabled embedding model training. By
leveraging characteristics of predictability and sparsity exist-
ing in embedding cache accesses, Herald applies a location-
aware inputs partition mechanism and an on-demand syn-
chronization strategy to reduce cache communications dur-
ing the training. Preliminary simulation results show that
Herald can significantly reduce the cache overhead across
different realistic datasets. In the next, we will integrate our
solution to a training framework and evaluate the end-to-end
training improvement.

ACKNOWLEDGMENTS

We thank our anonymous reviewers for their insightful com-
ments. This work is supported in part by the Key-Area Re-
search and Development Program of Guangdong Province
(2021B0101400001) and the Hong Kong RGC TRS T41-603/20-
R, GRF 16213621 and GRF 16215119.



Herald

REFERENCES

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

[10

[11

[12

[13

(14

[15

—

—

[t

= =

—

—

—_

=

=

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. 2016. TensorFlow: A System for Large-Scale
Machine Learning. In 12th USENIX symposium on operating systems
design and implementation (OSDI 16).

Bilge Acun, Matthew Murphy, Xiaodong Wang, Jade Nie, Carole-Jean
Wu, and Kim Hazelwood. 2021. Understanding training efficiency
of deep learning recommendation models at scale. In 2021 IEEE In-
ternational Symposium on High-Performance Computer Architecture
(HPCA).

Muhammad Adnan, Yassaman Ebrahimzadeh Maboud, Divya Mahajan,
and Prashant J Nair. 2021. Accelerating recommendation system train-
ing by leveraging popular choices. Proceedings of the VLDB Endowment
(2021).

Yoshua Bengio, Aaron Courville, and Pascal Vincent. 2013. Represen-
tation learning: A review and new perspectives. IEEE transactions on
pattern analysis and machine intelligence (2013).

Tiangi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,
Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. Mxnet:
A flexible and efficient machine learning library for heterogeneous
distributed systems. arXiv preprint arXiv:1512.01274 (2015).
Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar
Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai,
Mustafa Ispir, et al. 2016. Wide & deep learning for recommender
systems. In Proceedings of the 1st workshop on deep learning for recom-
mender systems.

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar
Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai,
Mustafa Ispir, et al. 2016. Wide & deep learning for recommender
systems. In Proceedings of the 1st workshop on deep learning for recom-
mender systems.

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar
Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai,
Mustafa Ispir, et al. 2016. Wide & deep learning for recommender
systems. In Proceedings of the 1st workshop on deep learning for recom-
mender systems.

CriteoLabs. [n. d.]. Criteo display ad challenge. https://www.kaggle.
com/c/criteodisplay-ad-challenge. ([n. d.]).

Leonardo Dagum and Ramesh Menon. 1998. OpenMP: an industry
standard API for shared-memory programming. IEEE computational
science and engineering (1998).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2018. Bert: Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805 (2018).

Miao Fan, Jiacheng Guo, Shuai Zhu, Shuo Miao, Mingming Sun, and
Ping Li. 2019. MOBIUS: towards the next generation of query-ad
matching in baidu’s sponsored search. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Min-
ing.

Jiawei Fei, Chen-Yu Ho, Atal N Sahu, Marco Canini, and Amedeo Sapio.
2021. Efficient sparse collective communication and its application to
accelerate distributed deep learning. In Proceedings of the 2021 ACM
SIGCOMM 2021 Conference.

Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiugiang
He. 2017. DeepFM: a factorization-machine based neural network for
CTR prediction. In Proceedings of the 26th International Joint Conference
on Artificial Intelligence.

Jui-Ting Huang, Ashish Sharma, Shuying Sun, Li Xia, David Zhang,
Philip Pronin, Janani Padmanabhan, Giuseppe Ottaviano, and Linjun

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

APNet 2022, July 1-2, 2022, Fuzhou, China

Yang. 2020. Embedding-based retrieval in facebook search. In Proceed-
ings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining.

Biye Jiang, Chao Deng, Huimin Yi, Zelin Hu, Guorui Zhou, Yang Zheng,
Sui Huang, Xinyang Guo, Dongyue Wang, Yue Song, et al. 2019. XDL:
an industrial deep learning framework for high-dimensional sparse
data. In Proceedings of the 1st International Workshop on Deep Learning
Practice for High-Dimensional Sparse Data.

Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanx-
iong Guo. 2020. A Unified Architecture for Accelerating Distributed
DNN Training in Heterogeneous GPU/CPU Clusters. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
20).

Kaggle. [n. d.]. Avazu mobile ads ctr. https://www.kaggle.com/c/
avazu-ctr-prediction. ([n. d.]).

Soojeong Kim, Gyeong-In Yu, Hojin Park, Sungwoo Cho, Eunji Jeong,
Hyeonmin Ha, Sanha Lee, Joo Seong Jeong, and Byung-Gon Chun.
2019. Parallax: Sparsity-aware data parallel training of deep neural
networks. In Proceedings of the Fourteenth EuroSys Conference 2019.
Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr
Ahmed, Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing
Su. 2014. Scaling distributed machine learning with the parameter
server. In 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14).

Sen Li, Fuyu Lv, Taiwei Jin, Guli Lin, Keping Yang, Xiaoyi Zeng, Xiao-
Ming Wu, and Qianli Ma. 2021. Embedding-Based Product Retrieval
in Taobao Search. In Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining.

Michael Lui, Yavuz Yetim, Ozgiir Ozkan, Zhuoran Zhao, Shin-Yeh
Tsai, Carole-Jean Wu, and Mark Hempstead. 2021. Understanding
capacity-driven scale-out neural recommendation inference. In 2021
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). IEEE.

Xupeng Miao, Hailin Zhang, Yining Shi, Xiaonan Nie, Zhi Yang, Yangyu
Tao, and Bin Cui. 2021. HET: Scaling out Huge Embedding Model
Training via Cache-enabled Distributed Framework. Proceedings of
the VLDB Endowment (2021).

Maxim Naumov, John Kim, Dheevatsa Mudigere, Srinivas Sridharan,
Xiaodong Wang, Whitney Zhao, Serhat Yilmaz, Changkyu Kim, Hector
Yuen, Mustafa Ozdal, et al. 2020. Deep learning training in facebook
data centers: Design of scale-up and scale-out systems. arXiv preprint
arXiv:2003.09518 (2020).

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural informa-
tion processing systems (2019).

Ceédric Renggli, Saleh Ashkboos, Mehdi Aghagolzadeh, Dan Alistarh,
and Torsten Hoefler. 2019. SparCML: High-performance sparse com-
munication for machine learning. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis.

Marcelo Tallis and Pranjul Yadav. 2018. Reacting to Variations in
Product Demand: An Application for Conversion Rate (CR) Prediction
in Sponsored Search. arXiv preprint arXiv:1806.08211 (2018).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. In Advances in neural information processing
systems.

Xinchen Wan, Hong Zhang, Hao Wang, Shuihai Hu, Junxue Zhang,
and Kai Chen. 2020. Rat-resilient allreduce tree for distributed machine
learning. In 4th Asia-Pacific Workshop on Networking.


https://www.kaggle.com/c/criteodisplay-ad-challenge
https://www.kaggle.com/c/criteodisplay-ad-challenge
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction

APNet 2022, July 1-2, 2022, Fuzhou, China

[30] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad
Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao,
Klaus Macherey, et al. 2016. Google’s neural machine translation
system: Bridging the gap between human and machine translation.
arXiv preprint arXiv:1609.08144 (2016).

Xinyang Yi, Yi-Fan Chen, Sukriti Ramesh, Vinu Rajashekhar, Lichan
Hong, Noah Fiedel, Nandini Seshadri, Lukasz Heldt, Xiang Wu, and
Ed H Chi. 2018. Factorized deep retrieval and distributed tensorflow
serving. In ser. Conference on Machine Learning and Systems.

Weijie Zhao, Deping Xie, Ronglai Jia, Yulei Qian, Ruiquan Ding, Ming-
ming Sun, and Ping Li. 2020. Distributed hierarchical gpu parameter
server for massive scale deep learning ads systems. Proceedings of

(31

—

(32

—

[33]

[34]

C. Zeng, et al.

Machine Learning and Systems (2020).

Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian, Chang Zhou,
Xiaoqiang Zhu, and Kun Gai. 2019. Deep interest evolution network
for click-through rate prediction. In Proceedings of the AAAI conference
on artificial intelligence.

Guorui Zhou, Xiaogiang Zhu, Chenru Song, Ying Fan, Han Zhu, Xiao
Ma, Yanghui Yan, Jungi Jin, Han Li, and Kun Gai. 2018. Deep interest
network for click-through rate prediction. In Proceedings of the 24th
ACM SIGKDD international conference on knowledge discovery & data
mining.



	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Overview of Embedding Models
	2.2 A Naive Cache System Is Not Enough
	2.3 Opportunities and Observations

	3 Design
	3.1 Overview
	3.2 Location-aware Inputs Partition
	3.3 Model Consistency Analysis

	4 Preliminary Results
	5 Discussion and future work
	6 Related work
	7 Conclusion
	References

