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Abstract—As datacenter networks continue to support a wider
range of applications and faster link speeds, they face the chal-
lenge of managing bursty traffic and transient congestion. End-
to-end congestion controls (CCs) find it increasingly difficult to
maintain effective due to the inherent feedback delay. To address
this issue, per-hop flow control (FC) has gained popularity due
to its ability to react promptly to transient congestion. However,
existing FC mechanisms either lack fine-grained (i.e., per-flow
granularity) control or require an impractical number of queues
that exceeds the capabilities of commodity switches.

In this paper, we introduce FLOWSAIL, an innovative FC
scheme that enables fine-grained control at the per-flow level
while requiring a practical number of switch queues, theoret-
ically as few as two. The core of FLOWSAIL is an effective
approximation of ideal FC by three key design components:
dynamic flow-to-queue mapping, hierarchical congested flow
identification, and on-demand isolation. We have implemented a
prototype of FLOWSAIL using the programmable P4 switch and
conducted extensive testbed experiments and simulations. The
results indicate that FLOWSAIL effectively sustains performance
with significantly fewer queues compared to existing FC schemes.
For instance, FLOWSAIL achieves 4.3× lower tail latency under
the same number of queues, matches existing FC schemes with
4× fewer queues, and holds robust performance with a minimum
of 2 queues.

I. INTRODUCTION

Nowadays, datacenters support an ever-growing variety of
applications, including distributed computing, machine learn-
ing systems, and large-scale data analysis [1]–[5]. These
applications often exhibit partition/aggregation traffic patterns,
leading to more frequent congestion events. The underlying
network fabric must simultaneously support the application’s
specific requirements, such as high throughput, low latency,
and quality of service (QoS). Congestion control (CC) is piv-
otal in facilitating effective communication. Current datacenter
networks (DCNs) primarily depend on complex end-to-end CC
mechanisms that utilize the receiver-echoed congestion signals
to regulate sending rate. Examples of such mechanisms include
DCTCP [6], DCQCN [7], Swift [8], and HPCC [9].

Nonetheless, end-to-end CC faces challenges in managing
bursts, as senders need at least one network round-trip time
(RTT) to receive the receiver-echoed signals before adjusting
sending rates, leading to a loss of control over bursty flows.
The increasing DCN link speed and shadow buffer size exacer-
bate this issue (§II-A). Firstly, the proportion of flows that can
complete within a single RTT increases with link speed [10],
[11]. These flows not only generate tricky transient congestion
but also cause non-negligible sub-RTT fluctuations, disrupting

the control of larger flows [12], [13]. Secondly, the buffer size
of commodity switches struggles to keep up with the rising
link speed, making it more challenging for switches to manage
the transient congestion and wait for the response from end-
to-end CC [10], [14].

Per-hop flow control (FC) has gained popularity due to its
timely and effective response in addressing transient bursts.
Typically, an FC scheme uses queue length as a congestion
signal and pauses (or resumes) the upstream entity to miti-
gate congestion (or increase utilization) within a 1-Hop RTT
(usually 1∼2µs), which is significantly faster than the end-
to-end RTT [15], [16]. However, existing FC mechanisms
often fail to maintain effectiveness in practice; they either
lack fine-grained (i.e., per-flow granularity) control or demand
an impractical number of queues beyond the capacities of
commodity switches (§II-B).

On one hand, Priority Flow Control (PFC) [17] is a coarse-
grained mechanism, operating on a per port (or priority queue)
basis. Consequently, PFC introduces a multitude of well-
known issues, such as Head-of-Line (HoL) blocking, conges-
tion spreading, and deadlock [7], [9], [18], [19]. On the other
hand, the ideal FC [20] allocates each flow to an exclusive
queue in the switch, which is fine-grained but impractical.
BFC [10], considered the state-of-the-art FC solution, still
demands a large number of physical queues exceeding the
typical switch capabilities, and BFC compromises isolation
granularity and suffers performance degradation when queues
are insufficient.

Considering the importance of FC and the inefficiency of
existing FC schemes, we pose the question: Is it possible to
design an FC scheme that offers fine-grained control (i.e., per-
flow granularity) and requires a feasible number of queues? In
this paper, we offer a cautiously optimistic response through
FLOWSAIL. The key idea of FLOWSAIL is to emulate the
behaviors of ideal FC with a practical number of switch
queues, theoretically as few as two.

We find that the effectiveness of ideal FC stems from two
aspects: (i) the precise determination of which set of flows
are responsible for congestion on the congested port; (ii) the
independent pausing or resuming the transmission of flows
upon receiving control frames from downstream entities. We
observe that we can emulate the two aspects’ behavior of ideal
FC without the requirement for per-flow queues (§III-A).
• At the congested port, if we can monitor each flow’s buffer

size, we can make the same per-flow level control decisions
as the ideal FC, eliminating the need for a per-flow queue.979-8-3503-0322-3/23/$31.00 ©2023 IEEE



• At the upstream port, if we can direct all flows that need
to be paused to a single paused queue while keeping other
queues active, we can approximate the control action of the
ideal FC, theoretically needing only two queues.

At its core, FLOWSAIL addresses several challenges to
ensure its effective implementation (§III-B). (i) How to define
the granularity of congested flows? A flow can experience
intermittent congestion during its lifespan, leading to a non-
constant congestion status. The definition of congested flow
must account for this variability. (ii) How to effectively and
correctly identify congested flows at the congested port? The
decision of which set of flows should be paused or resumed
must be made with an acceptable computational complexity
while identifying the real congestion-responsible flows. (3)
How to isolate flows and avoid the out-of-order issue? FLOW-
SAIL tries to allocate all the flows requiring pausing to a single
queue, which could potentially lead to an out-of-order problem
if flows are already buffered in other queues.

FLOWSAIL carefully designs its components and system-
atically integrates them (§IV) to address the aforementioned
challenges. First, similar to BFC [10], FLOWSAIL defines con-
gested flows at the granularity of active flows to accommodate
the non-constant congestion status during a flow’s lifetime.
Second, FLOWSAIL dynamically maps flows to available
queues and adopts a hierarchical congested flow identification
method, utilizing two-dimensional states to decide which set of
flows should be controlled. Third, FLOWSAIL performs an on-
demand isolation mechanism after receiving control frames,
where FLOWSAIL reassigns all the flows requiring pausing to
a single isolation queue and ensures definite in-order delivery
when scheduling flows.

We have implemented a FLOWSAIL prototype using the
commodity programmable P4 switch [21] and demonstrated
that FLOWSAIL can operate at a 100Gbps line rate (§V).
Through extensive testbed experiments and simulations, we
illustrate that FLOWSAIL significantly outperforms existing
schemes (§VI). The testbed experiments reveal that FLOW-
SAIL mitigates congestion at a per-flow granularity. Concur-
rently, large-scale simulations demonstrate that FLOWSAIL
achieves superior performance under various workloads and
settings. For example, compared with existing FC schemes,
FLOWSAIL achieves 4.3× lower tail (99th percentile) latency
for short flows and 2× higher average throughput for large
flows under the same number of queues and maintains compa-
rable performance with 4× fewer queues. FLOWSAIL exhibits
resilience in the face of incast degrees and parameter settings
and holds robust performance with a minimum of 2 queues.

In summary, we make the following key contributions:

• We observe that the behavior of the ideal FC can be
effectively approximated with a practical number of queues,
which, in theory, could be as few as two.

• We introduce FLOWSAIL, an FC scheme that supports fine-
grained control while only requiring a feasible number of
queues. FLOWSAIL employs several key design components
to tackle the non-trivial design challenges encountered.
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Fig. 1: The left graph displays the percentage of flows that
complete injecting within a 12µs RTT across four workloads
and three link speeds. The right graph presents the CDF of
flow injection time (FIT) on a 100Gbps link; three vertical
lines represent 4µs, 8µs, and 12µs RTTs, respectively.

• We implement a FLOWSAIL prototype using the commodity
programmable P4 switch and demonstrate its ability to op-
erate at line rate. The superior performance of FLOWSAIL is
further substantiated through extensive testbed experiments
and simulations.

II. BACKGROUND & MOTIVATION

A. End-to-end Congestion Control Falls Short
The escalating DCN link speed and shadow buffer size ren-

der it increasingly difficult to achieve satisfactory performance
solely with end-to-end CC protocols.
Rising link speeds result in increasingly short flows . As
datacenter link speeds swiftly expand from tens to hundreds
of Gigabytes per second, a larger proportion of flows become
"smaller," and can be transmitted within a single RTT. To
highlight this, we analyze four production datacenter work-
loads: Web Server [22] (W1), Alibaba Storage [9] (W2), Web
Search [6] (W3), and Google RPC [23] (W4).

First, we measure three link speeds and calculate their
bandwidth-delay products (BDPs), assuming a 12µs RTT1,
and then classify flows with sizes smaller than the BDP as
capable of finishing injecting within one RTT. Fig. 1a displays
the percentage of such flows. The result indicates that as link
speeds rise, more flows can complete their injection within
one RTT. We then present the cumulative distribution function
(CDF) of flow injection time (FIT) under W1∼W4 and a
100Gbps link speed in Fig. 1b. The rack-level (4µs), pod-
level (8µs), and 3-layer (12µs) RTTs are explicitly indicated
as three vertical lines. As the results demonstrate, even for
rack-level communication with a considerably small RTT, a
significant proportion of flows can complete within the first
RTT. Numerous studies have also confirmed this trend [10]–
[13], [24].

The increasing short flows could potentially induce greater
burstiness in network traffic. This not only injects uncontrolled
congestion into the network but also affects large flows. Large
flows may encounter rapidly emerging and disappearing cross-
traffic bursts, resulting in non-negligible sub-RTT network
fluctuations and disrupting the proper control [13], [24].

1The 12µs is a typical 6-hops end-to-end latency in a 3-layer fat-tree
topology.



HPCC
DCTCP
DCQCN
HPCC w/o PFC

C
D

F

80%

90%

100%

Percentage of Buffer Occupation
0% 20% 40% 60% 80% 100%

(a) Overall buffer occupation.

40

20.7

Th
ro

ug
pu

t (
G

bp
s)

0

20

40

Ideal HPCC

(b) Throughput of a
long-lived flow.

Fig. 2: (a) End-to-end CC alone results in large switch buffer
occupation. (b) PFC causes throughput degradation.

End-to-end CC alone is insufficient for managing transient
congestion. End-to-end CC protocols primarily depend on
receiver-echoed signals (e.g., ECN [6], RTT [25], and INT [9])
to modulate sending rates. Consequently, these protocols
struggle to handle transient congestion. We first demonstrate
this issue using an experiment where we evaluate DCQCN,
DCTCP and HPCC with PFC, and HPCC without PFC in a
3-layer fat-tree topology, using a Web Server workload with a
55% average load and 5% incast traffic. The switch employs a
shared buffer scheme with a 12MB total buffer size. The CDF
of the overall buffer occupation on the switch is presented
in Fig. 2a. The results indicate that end-to-end CC alone
cannot maintain low switch buffer occupancy. For example,
HPCC alone ("HPCC w/o PFC") experiences high tail buffer
occupation and a potential buffer overflow. Integrating PFC
reduces the buffer occupation, highlighting the necessity of
per-hop FC. Despite this, PFC’s efficacy is restricted since it
is ingress-queue-based and coarse-grained.

To further illustrate the impact of PFC on flow-level metrics,
we conduct a micro-benchmark in which a long-lived flow
shares a single 100Gbps link with cross-traffic (at a 60% aver-
age load) following the Web Server distribution, similar to the
motivation experiment conducted by BFC [10]. We evaluate
HPCC with PFC enabled and measure the average throughput
of this long-lived flow. The results in Fig. 2b demonstrate
that the long-lived flow experiences nearly a 50% reduction in
throughput compared to an ideal situation. This is because
cross-traffic causes significant transient congestion, eluding
HPCC’s control and leading to continuous PFC pausing.

This issue is further complicated by the fact that the com-
modity switch buffer size lags behind bandwidth, thus posing a
challenge for switches in managing transient congestion while
awaiting the response from end-to-end CC [11], [14], [26].

B. Existing Flow Control Schemes are Insufficient

Per-hop FC can more promptly address transient congestion.
Specifically, per-hop FC can directly regulate the upstream
entity’s transmission to mitigate its congestion or increase
utilization within a 1-Hop RTT (usually 1-2µs), as opposed to
an end-to-end RTT. However, existing FC mechanisms either
cannot manage congestion on a fine-grained basis or require
an impractical amount of physical switch queues.
PFC is coarse-grained. PFC [17] pauses the upstream entity
at a per-priority-queue granularity when the ingress queue
length exceeds a specified threshold. Since PFC does not
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Fig. 3: Performance of BFC with varying incast degrees.

differentiate between flows, innocent flows may be paused
when they share queues with congested flows. As a result, PFC
leads to a mass of well-known problems [7], [9], [18], [19].
Industries attempt to prevent PFC triggering by using com-
plex end-to-end protocols. However, as we have previously
discussed, these end-to-end protocols have inherent limitations
and per-hop FC is necessary for handling transient congestion.
Ideal FC is fine-grained but impractical. The ideal im-
plementation of per-hop FC [20] allocates a dedicated queue
to every flow, thus providing promising per-flow level control.
Despite its potential, current switch capabilities cannot accom-
modate the number of physical queues demanded by the ideal
FC, rendering it impractical.
BFC compromises isolation granularity when queues are
limited. BFC [10] is currently considered the state-of-the-art
FC solution that can be implemented in today’s programmable
switches. BFC relies on physical queues for regulating flows.
The original implementation of BFC uses 32-128 queues per
port; however, this number exceeds the typical capacity of
commodity switches for two main reasons. Firstly, the majority
of switches cannot support such a large number of queues per
port and are usually equipped with 8 or fewer queues [21],
[27], [28]. Secondly, even if we assume access to high-
capacity switches, the physical queues are critical resources
and are typically reserved for strong physical isolation and
differentiation between applications of different tenants. Con-
sequently, dedicating all the queues to intra-tenant traffic is
impractical [29], [30]. Note that FLOWSAIL primarily focuses
on reducing the number of required physical queues. However,
in realistic implementation, FLOWSAIL still requires several
advanced switch features (details in §V).

BFC dynamically assigns a dedicated queue to each active
flow. However, when there are no available queues, BFC
permits multiple flows to share a queue and manages all flows
within the same queue collectively, thereby diminishing iso-
lation granularity. Consequently, its performance is critically
dependent on the number of available queues and experiences
considerable degradation when queues are limited.

We conduct a simulation to demonstrate BFC’s performance
with 32 queues (BFC-32Q, used in the original paper) and 8
queues (BFC-8Q) per port. We use the same settings as in
Fig. 2a, and evaluate BFC solely. The incast degrees are varied
and we measure the tail FCT slowdown for short flows and the
average FCT slowdown for large flows. The results, illustrated
in Fig. 3, indicate that BFC-8Q suffers substantial degradation,
with up to 11.2× higher tail latency for short flows (Fig. 3a),



and 1.7× lower throughput for large flows (Fig. 3b), compared
to BFC-32Q. It is worth noting that the transmitting capacity
per port remains constant for both 8 and 32 queues; thus,
the performance degradation results from severe interference
between flows within the same queue, such as HOL blocking
and unfair pausing to innocent flows.

III. FLOWSAIL OVERVIEW

A. Opportunities

The efficacy of the ideal FC is derived from two key aspects.
Firstly, at a congested port, where the input rates surpass the
output capacity, the ideal FC accurately identifies the set of
flows responsible for the congestion. This is accomplished
by verifying whether the queue length associated with each
flow exceeds a predetermined threshold, given that each flow
is allocated an exclusive queue. The ideal FC subsequently
transmits control frames to its upstream entities. Secondly, at
the ports receiving control frames from downstream entities,
the ideal FC independently pauses or resumes the transmission
of flows by manipulating the corresponding queue.

The opportunity behind FLOWSAIL lies in its ability to
approximate the dual-aspect behavior of the ideal FC without
requiring per-flow queues. Simultaneously, commodity pro-
grammable switches [21], [31], [32] offer the requisite data-
plane programmability, such as stateful operation, capability to
program the assignment of flows to queues, and independent
pausing/resuming each queue within the data plane.
O1: At the congested port, if we can monitor each flow’s
buffer size, we can make control decisions at the per-flow
level, the same as the ideal FC, thereby obviating the need for
a per-flow queue.
O2: At the upstream ports receiving control frames, given
that there are only two flow control actions (i.e., halting or
starting flow transmission), if we can redirect all flows that
need to be paused to a single paused queue while maintaining
other queues active, we can emulate the control action of the
ideal FC. Theoretically, only two queues would be necessary.

B. Challenge & Overview

Fig. 4 illustrates the FLOWSAIL architecture, which care-
fully integrates its components to address the challenges.
C1: How to define the granularity of congested flow?
As mentioned in §I, FLOWSAIL adopts a similar method to
BFC [10] by defining flows at the granularity of active flows
( 1 ). FLOWSAIL independently manages different active flows
even if they share the same flow identifier, thereby accommo-
dating the non-constant congestion status experienced during
a flow’s lifespan.
C2: How to effectively and correctly identify congested
flows? FLOWSAIL employs a hierarchical method for iden-
tifying congested flows ( 2 ). Specifically, FLOWSAIL initially
maps flows to available queues, utilizing the egress queue
length as the primary congestion signal. When a queue length
exceeds a given threshold and serves more than one flow,
FLOWSAIL then uses a per-flow table to facilitate a secondary-
level decision. This strategy allows FLOWSAIL to minimize
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Fig. 4: FLOWSAIL Architecture.

the frequency of complex flow-table calculations while main-
taining fine-grained control granularity.
C3: How to isolate flows and avoid the out-of-order issue?
Upon receiving control frames, FLOWSAIL implements an on-
demand isolation mechanism, reassigning all flows slated to
be paused to a single paused queue while maintaining other
queues active ( 3 ). FLOWSAIL also guarantees deterministic
in-order delivery by Order Mark Matching when scheduling
flows, accommodating the go-back-N retransmission scheme
prevalent in most commodity RNICs [7], [9], [33]
Behavior Comparison: We illustrate a comparison of the
behavior among ideal FC, BFC, and FLOWSAIL under a
specific scenario depicted in Fig. 5, where four flows (f1 ∼ f4)
with varying arrival rates traverse a congested egress port. As
the ideal FC assigns a dedicated queue to each flow, flows
are independently controlled, i.e., the congestion-responsible
flows f1, f4 are paused, while others remain unimpeded. In
the case of BFC and FLOWSAIL, we assume that only one
queue is available at the congested egress port, and f5 is
initially mapped to the same upstream egress queue as f4.
Given that BFC regulates traffic within a queue collectively,
all flows f1 ∼ f5 are paused, leading to an unfair degradation
of f2, f3, f5. In contrast, FLOWSAIL correctly pauses flows
f1 and f4 at the congested port while leaving f2 and f3 unaf-
fected. Additionally, at the upstream port, FLOWSAIL isolates
f4 to an isolation queue while keeping f5 uninterrupted. As a
result, FLOWSAIL approximates the behavior of the ideal FC.

IV. FLOWSAIL DESIGN

A. Flow Identification and Mapping

Algorithm 1 presents the methodology for identifying flows
and establishing flow-to-queue mapping logics. Flows fall into
two categories: congested and normal. Congested flows are
allocated to a specially reserved isolation queue, denoted as
rsvQ (Line 3). The set of congested flows is recognized by
control frames from downstream entities (thoroughly described
in §IV-C). Regarding the mapping of normal flows, FLOW-
SAIL inherits the approach used in BFC [10]. FLOWSAIL
dynamically assigns a new flow to an empty egress queue
when available by maintaining a bitmap of empty queues
at the ingress pipeline. If all queues are currently engaged,
FLOWSAIL assigns the flow to a random queue, essentially im-
plementing the stochastic fair queuing [34]. For old flows (i.e.,
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those with packets already queued at the switch), subsequent
packets are deposited into the same FIFO queue (Line 7∼16).

Each flow is distinguished by a unique 5-tuple, consisting
of source and destination address, port, and IP protocol, which
are collectively referred to as the flow identifier (FID). To track
flow size and queue assignment, FLOWSAIL manages a flow
table indexed by the hash of the FID. Congested and normal
flows are tracked by congested flow table (CFT) and normal
flow table (NFT), respectively. Each entry in NFT maintains
the following states: the assigned queue (qIdx), the number
of buffered packets (size), and the number of packets that
have encountered congestion (pauseNum, used in §IV-B).
The implementation details of the flow table are in §V.

B. Hierarchical Congested Flow Identification

FLOWSAIL adopts a hierarchical congested flow identifica-
tion approach, facilitating per-flow level control granularity.
Specifically, FLOWSAIL initially employs the queue length as
a primary congestion signal. When a queue length exceeds a
given threshold and serves more than one flow, FLOWSAIL
utilizes the states in the flow table to make a secondary-level
decision. Utilizing the queue length as a triggering condition
reduces the frequency of flow-table calculation. Lines 17∼25
in Algorithm 1 illustrate this hierarchical identification pro-
cess. Delving into the details of the secondary-level decision,
FLOWSAIL uses the recorded flow’s size in the flow table
to verify whether it exceeds the fair sharing size (Sfair) of
the congested egress queue (Line 23). When a flow exceeds
Sfair, it is identified as the cause of the congestion and should
be paused.

In addition to the flow table, FLOWSAIL manages a queue
table (QT), indexed by the port number and queue index. Each
entry in QT retains the following states: the number of active
flows (flowNum), and the count of received control frames
(cfNum, used in §IV-C). The flowNum increases by 1 when
a new flow arrives as shown in Line 15, and decreases by 1
when the switch has drained off a flow’s packets (Algorithm 2,
Line 12).

1The term CFT/NFT means that the congested flows use CFT, and the
normal flows use NFT. The real implementation can use the P4’s intrinsic
metadata to distinguish these two types of packets.

Algorithm 1 Enqueueing, Flow-to-queue Mapping, and Con-
gested Flow Identification

Inputs: NFT: The flow table for normal flows; CFT: The flow
table for congested flows; QT: The queue table; Ql, Qh: The
two queue length thresholds; rsvQ: The queue reserved for
congested flows;

1: function ENQUEUE(pkt)
2: key = hash(pkt.FID)

▷ Identify flow and map it to queue
3: if key is in CFT then ▷ Congested flow
4: pkt.qIdx = rsvQ
5: CFT[key].size += pkt.size
6: else
7: if NFT[key].size ̸= 0 then ▷ Old flow
8: pkt.qIdx = NFT[key].qIdx
9: else ▷ New flow

10: if empty q available at pkt.egressPort then
11: NFT[key].qIdx = emptyQ
12: else
13: NFT[key].qIdx = randomQ
14: pkt.qIdx = NFT[key].qIdx
15: QT[pkt.qIdx].f lowNum += 1 ▷ Update QT
16: NFT[key].size += pkt.size

▷ Hierarchical congested flow identification
17: if pkt.qIdx.length > Qh then
18: CFT/NFT[key].pauseNum += 1 1

19: pkt.ifCongested = true
20: else
21: if pkt.qIdx.length > Ql then
22: Calculate Sfair , the the fair sharing size at pkt.qIdx

▷ Per-flow level control decision
23: if CFT/NFT[key].size > Sfair then
24: CFT/NFT[key].pauseNum += 1
25: pkt.ifCongested = true
26: if CFT/NFT[key].pauseNum == 1 then
27: send PAUSE(pkt.FID) ▷ Pause upstream entity

To calculate Sfair, FLOWSAIL employs the logarithm,
which can be implemented by counting the number of non-
zero bits of data, and the hardware-friendly shifting operations:

Sfair = Q >> ⌈log2(QT [qIdx].f lowNum)⌉, (1)

where Q represents the egress queue length. Sfair signifies
the fair allocation of queue capacity among all active flows.
In situations where the number of active flows is not a power
of two, the logarithm of this number is rounded up to avoid
under-regulation of flows. Note that this calculation assumes
flows have the same weight. If flows have different weights,
calculating Sfair could potentially result in higher overhead.
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Thresholds. FLOWSAIL permits flows not exceeding their
sharing size to continue transmitting, even when they traverse
a congested port. However, this could lead to a buffer overflow
in extreme cases. For instance, when a large flow shares a
queue with many bursty flows (each occupying a few packets),
the bursty flows are under-regulated but the accumulation of
them could trigger a buffer overflow. Therefore, we establish
two thresholds, Ql and Qh, to prevent the congested queue
from becoming overloaded. When queue length Q surpasses
Ql but remains below Qh, FLOWSAIL only sends PAUSE to
flow that occupies more than Sfair (Line 21∼25). Note that
each flow’s buffer size is recorded in flow table (mentioned in
§IV-A). If Q exceeds the conservative Qh, FLOWSAIL pauses
all passing flows to avoid severe buffer overflow (Line 17).

We set the pause thresholds Ql and Qh to 1-Hop BDP and
3-Hop BDP, respectively. Let Nactive denotes the number of
non-paused queues in the port, HRTT signifies the 1-Hop
RTT to the upstream, and µ represents the port capacity.
Thus, Ql and Qh are determined by HRTT ∗ µ/Nactive

and 3 ∗ HRTT ∗ µ/Nactive, respectively. A pre-configured
match-action table indexed with Nactive and µ can calculate
these values efficiently. Ql ensures that the switch can drain
off packets within 1-Hop RTT if the PAUSE takes effect
immediately, and Qh acts as a safeguard to tackle the extreme
congestion. We evaluate the sensitivity to them in §VI-C.

C. Control Frame Handling & On-demand Isolation

FLOWSAIL pauses an upstream flow when it is identified
as congested and resumes it when congestion subsides. This
process is monitored via the pauseNum counter in the flow
table. As a packet enqueues, if it is identified as a contributor
to congestion, the pauseNum increases by 1 (Lines 17∼25).
When the packet (i.e., the contributor) leaves the switch, the
pauseNum decreases by 1 (Algorithm 2, Lines 5∼6). FLOW-
SAIL generates a PAUSE frame only when the pauseNum
transitions from 0 to 1, and a RESUME frame when it switches
from 1 to 0 (Algorithm 1, Line 26; Algorithm 2, Line 7),
conserving bandwidth used for sending control frames. Both
PAUSE and RESUME frames carry the flow’s FID.

Given the current limitations of switch ASICs, flow control
operations (i.e., stopping or starting flow transmission) must
be facilitated with the help of physical queues. Therefore,
FLOWSAIL tries to approximate the ideal FC’s behavior by
rerouting all paused flows to a single paused queue (rsvQ),
while keeping other queues active.

Algorithm 2 elaborates on the process of isolation. FLOW-
SAIL employs a dedicated flow table (CFT) indexed by the

Algorithm 2 Dequeueing and Control Frame Handling
Inputs: NFT: The flow table for normal flows; CFT: The flow
table for congested flows; QT: The queue table; rsvQ: The
queue reserved for congested flows;

1: function DEQUEUE(pkt, qIdx) ▷ qIdx: the dequeueing queue
2: key = hash(pkt.FID)
3: if qIdx == rsvQ then
4: CFT[key].size -= pkt.size
5: if pkt.ifCongested == true then
6: CFT[key].pauseNum -= 1
7: if CFT[key].pauseNum == 0 then
8: send RESUME(pkt.FID)
9: if CFT[key].status == resumed && CFT[key].size

== 0 then ▷ Checking if to release this flow from CFT
10: Delete key from CFT
11: if CFT[key].size == 0 then
12: QT[qIdx].f lowNum -= 1
13: else ▷ Same as above, omitted as space limited
14: Update NFT[key].size, NFT[key].pauseNum, QT

[qIdx].f lowNum, and check if to RESUME(pkt.FID)
15: function RECEIVECONTROLFRAME(f )
16: cf_key = hash(f.cFID) ▷ The FID to be paused
17: if f == PAUSE then
18: if cf_key is not in CFT then ▷ New congested flow
19: CFT[cf_key].size = 0
20: CFT[cf_key].status = paused
21: if NFT[cf_key].size ̸= 0 then ▷ In-order support
22: Enqueue OrderMark to rsvQ and

NFT[cf_key].qIdx
23: Pause NFT[cf_key].qIdx ▷ Original queue
24: else
25: CFT[cf_key].status = paused
26: QT[rsvQ].cfNum += 1
27: else ▷ f = RESUME
28: QT[rsvQ].cfNum -= 1
29: if NFT[cf_key].size ̸= 0 then
30: Resume NFT[cf_key].qIdx
31: CFT[cf_key].status = resumed
32: if CFT[cf_key].size == 0 then
33: Delete cf_key from CFT ▷ Release it from CFT

hash of the FID, to track the states of congested flows. Each
entry in CFT includes the number of packets in rsvQ (size),
the flow status (status), the pauseNum (as previously
explained), and the FID. Upon receiving a PAUSE frame
containing the FID of a congested flow (denoted as cFID),
FLOWSAIL verifies the presence of cFID in CFT by checking
if cFID == CFT[hash(cFID)].FID. If not, FLOWSAIL
adds it to CFT (Line 18∼20). Subsequent packets from cFID
are then directed to rsvQ, as described in §IV-A.
Queue Scheduler. FLOWSAIL’s queue is regulated by the
cfNum in the queue table QT, counting the number of received
control frames. Each PAUSE frame increments the counter by
1, and a RESUME frame decreases it by 1 (Line 26, 28).
FLOWSAIL pauses a queue when cfNum increases from 0 to
1, and resumes it when the count decreases from 1 to 0.
In-order Support. When FLOWSAIL attempts to add a flow
to CFT and that flow has buffered packets in original queue
(e.g., q1), FLOWSAIL also pauses q1 to prevent these buffered
packets from exacerbating downstream congestion (Line 23).
Conversely, a RESUME frame resumes q1 too (Line 30).
Although pausing q1 may result in an unfair degradation for
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innocent flows in q1, we consider this to be insignificant
because the re-direction of congested flow to rsvQ prevents
q1 being paused continuously in the future. Using a 2-flow
case for an example, assuming a congested flow (f1) and
innocent flow (f2) initially share q1. If there is no rsvQ, f1
will continue arriving at q1, so q1 (and f2) will be paused
many times until CC eventually reduces f1’s rate. In contrast,
FLOWSAIL redirects the subsequent packets of f1 to rsvQ,
preventing q1 (and f2) be paused constantly in the future.

Besides, FLOWSAIL enqueues two Order Mark (OM) pack-
ets containing the flow’s FID to q1 and rsvQ (Line 21∼22) to
facilitate the in-order delivery. The OM packet in rsvQ must
wait for another matched OM before its transmission begins.
We name this scheme Order Mark Matching, with a high-level
view shown in Fig. 6 and implementation details in §V.
Configuration of isolation queue and release of congested
flow. The rsvQ is configured statically and solely used for
accommodating congested flows. This means it cannot be
used for holding normal flows, even when it is empty; this
is a simplification that facilitates hardware implementation. A
congested flow is removed from CFT once it is resumed and
has no buffered packets in rsvQ (Line 10, 33). To prevent
frequent addition and deletion of the same flow in CFT,
we incorporate a timestamp in CFT which is updated with
every packet enqueue or dequeue operation. Thus, a congested
flow is only released when it is resumed, has no buffered
packets, and the timestamp exceeds a given threshold. Since
the congested port can drain off packets for one HRTT, we set
this threshold to a small multiple of the HRTT (2 HRTT).

V. IMPLEMENTATION

Hardware Feasibility. As mentioned in §II-B, FLOWSAIL
implementation requires certain capabilities in programmable
switches: (i) line-rate stateful operations support; (ii) at least
two FIFO queues per port with flow-to-queue programmabil-
ity; (iii) dynamic pausing and resuming of each queue at the
data-plane. The newest Tofino2 ASIC [32] meets all these
requirements. However, due to a lack of access to Tofino2, we
implemented FLOWSAIL using Tofino [21] (that satisfies the
first two conditions only) with an approximation of the 3rd
condition. Specifically, we observe that, in terms of a UDP
flow, pausing it and discarding all its packets when it should
be paused have the same effect on its average throughput.
Consequently, we chose to evaluate UDP flows in testbed
experiments and replicate the effect of data-plane pausing on

their average throughput using data-plane dropping. Note that
this method is solely for the purpose of completing a prototype
validation; it is not a fully comprehensive implementation and
cannot resemble the overall RDMA network. In §VI-A, we
complement simulations to cross-validate the testbed results.
FLOWSAIL Pipeline. Fig. 7 illustates the pipeline of FLOW-
SAIL implementation. Upon into the ingress pipeline, packets
are classified into three types: data packets, control frames,
and mirror packets. For data packets, the Flow-to-Queue
Mapping calculates the assigned queue, and then Flow Control
Decision determines whether to send a PAUSE frame. The
resuming decision is made in the egress pipeline. Control
frames, after being classified, are used to update the CFT and
are then converted into an Order Mark, which becomes two
by mirroring using the Tofino module Mirror. A new control
frame is generated by mirroring the data packet’s header and
then is constructed in the Control Frame Constructor at the
egress pipeline. Both the Order Mark and control frame are
assigned specific Ethernet types for classification.
Flow Table Implementation. A flow table in FLOWSAIL
comprises multiple register arrays, with each array represent-
ing an entry value. Each entry in FLOWSAIL flow table con-
tains a maximum of 50 bits. Considering a common scenario
with 10K active flows per switch [35], FLOWSAIL requires a
total of 64KB memory. We use Cuckoo Hash [36] as the hash
function, allowing for load factors of approximately 70%. As
a result, we can statically set the overall size of the flow table
to 100KB. Besides, probabilistic counters could further reduce
memory usage [37]. Note that when a hash collision occurs
(which should be rare), two flows that hash to the same entry
are treated as a single flow with shared flow states.
Order Mark Matching. We facilitates the in-order delivery
through a customized Order Mark (OM) Matching scheme.
Specifically, when dequeuing an OM from rsvQ, the switch
checks whether the flow (OM.FID) has buffered packets
in normal queues. If so, OM.FID is recorded, and the
pauseNum of rsvQ is reduced by 1; this reduction requires
rsvQ must wait for a matched OM. When an OM is dequeued
from normal queues, and if a flow is waiting for matched OM,
and matches OM.FID, the pauseNum of rsvQ is increased
by 1. Note that this is not fundamental to FLOWSAIL as
Tofino2 [32] has natively supported the Order Mark Matching
feature in its Advanced Flow Control module.

VI. EVALUATION

We provide a proof-of-concept validation of our FLOWSAIL
implementation and extensively compare the performance of
FLOWSAIL against previous schemes using large-scale NS-
3 [38] simulations. Our evaluation seeks to answer:
• What is the efficiency of FLOWSAIL prototype? Our

results of the testbed microbenchmark demonstrate that
FLOWSAIL operates at a 100Gbps line rate and effectively
mitigates congestion at a per-flow granularity (§VI-A).

• How does FLOWSAIL perform under realistic workloads
in large-scale DCNs? Large-scale simulations illustrate
that FLOWSAIL capably manages bursty traffic. FLOWSAIL
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reduces latency (by up to 15×) for short flows and improves
throughput for large flows, compared to existing FC and CC
schemes (§VI-B).

• How sensitive is FLOWSAIL to various traffic patterns
and parameters? Our detailed simulations reveal that
FLOWSAIL exhibits resilience in the face of changes in
workload distributions, incast degrees, number of available
queues, and threshold settings (§VI-C).

A. Testbed Micro-benchmark

We establish a testbed topology comprising two Wedge
100BF-32X [21] switches2 and three servers, each equipped
with a Mellanox ConnectX-5 100GbE RNIC (Fig. 8). All ports
are 100Gbps and possess 8 queues. We evaluate UDP flows in
the testbed experiment and use simulations to cross-validate
the results, as described in §V.
Operating Efficiency. We initially enable two long-running
flows {S−R1, R2−R1} that compete at the P2−R1 link, and
measure their aggregated throughput at R1. We measured that
the aggregated throughput could reach 96∼98 Gbps, signifying
that FLOWSAIL can operate at a 100Gbps line rate.
Per-flow Control Granularity. Next, we evaluate the per-
flow control granularity offered by FLOWSAIL. As depicted
in Fig. 8, we enable flows f1 and f2 route from S to R1

while f3 goes from S to R2. The f1, f2, and f3, start with
rates 60Gbps, 20Gbps, and 20Gbps, respectively. We explicitly
restrict the draining capacity of port P2 to 40Gbps, thereby P2

becoming a bottleneck as its input rate significantly exceeds
its draining capacity. We compare FLOWSAIL with BFC [10]
and ideal FC [20]. For the BFC and FLOWSAIL evaluation,
we initially assign f1 and f3 to share the same egress queue
on P1, while f1 and f2 share the same egress queue on P2.

We measure the average throughput of f1 ∼ f3 and show
the result in Fig. 9. Ideal FC controls flows independently,
pausing only f1 (which exceeds P2’s fair sharing size) and
maintaining f2 and f3 rates at 20Gbps. BFC, managing traffic
collectively within the same queue, simultaneously pauses f1
and f2 when P2 is congested, and f3 is also paused because it
shares an upstream queue with f1, causing about 50% unfair
degradation to f2 and f3. Conversely, FLOWSAIL performs
similarly to ideal FC, correctly identifying that f1 contributes
to the P2’s congestion and only pauses f1’s upstream queue,

2Since we only have access to a single Wedge 100BF-32X switch, we em-
ulate two switches by directly connecting two switch ports, which essentially
involves sending dequeued packets back into the switch.
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Fig. 9: Throughput of flows f1 ∼ f3 depicted in Fig. 8, with
simulations cross-validating the testbed results.

thus maintaining f2 unaffected. Furthermore, when the PAUSE
frame is propagated to P1, FLOWSAIL isolates f1 to a paused
isolation queue, ensuring f3’s throughput is unaffected.

We use simulations, where we implement data-plane paus-
ing and resuming, to cross-validate the testbed results. The
simulation results (shown in Fig. 9) are highly consistent with
the testbed results, validating the reliability of our prototype.

B. Large-scale Simulations

Network Topology. We simulate a 3-layer fat-tree topology,
composed of 64 top-of-the-rack (ToR) switches, 64 Spine
switches, 64 Core switches, and 1024 servers, with an over-
subscription ratio of 2:1. Each link is 100Gbps and has a
propagation delay of 1µs, yielding a 1-Hop RTT of 2µs. The
switches use a standard shared memory model with a total
buffer of 12MB, and use the Equal-Cost Multi-Path (ECMP)
as load balancing and Go-Back-N for retransmission.
Workloads and Metrics. We construct two realistic work-
loads, Web Search [6] and Web Server [22], which comprise
a mix of large and short flows, around 70% and 20% of
flows under 10KB, respectively. The synthesized flows follow
a Poisson process with sources and destinations randomly
selected. We measure different loads, where X% denotes X%
load on the core links. We supplement these with a 50-to-1
incast traffic, with flow sizes randomly selected between 50KB
to 200KB and a total load of (0.1*X)%. Our primary metric
is FCT slowdown, supplemented by FCT and queue length.
Comparisons. We compare FLOWSAIL with four end-to-end
transport protocols: DCQCN [7], Timely [25], HPCC [9], and
DCTCP [6], configuring their parameters according to their
papers. By default, end-to-end CC is evaluated with PFC en-
abled. We also examine the state-of-the-art FC scheme, BFC.
We primarily evaluate BFC and FLOWSAIL, each equipped
with 8 queues, denoted as BFC-8Q and FLOWSAIL-8Q. A
comprehensive evaluation of BFC and FLOWSAIL with dif-
ferent queue numbers is conducted in §VI-C.
Performance. We examine FLOWSAIL against comparisons
under a Web Server distribution with a load varying from 0.4
to 0.8, with and without incast traffic. Evaluations under Web
Search are detailed in §VI-C.

(i) Web Server workload with incast. We evaluate the
average and tail (99th percentile) FCT slowdown for short
flows (< 10KB) and average FCT slowdown for large flows
(> 100KB). As depicted in Fig. 10, FLOWSAIL significantly
outperforms BFC and all end-to-end CCs in terms of latency
for short flows and throughput for large flows. Specifically,
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FLOWSAIL achieves a remarkable reduction of up to 19×,
17.9×, 3.2×, 2.2×, 4.3× in tail latency for short flows
compared to Timely, DCQCN, DCTCP, HPCC, and BFC,
respectively (Fig. 10b). This performance enhancement is
attributed to FLOWSAIL’s precise control over congested
flows, preventing unfair blocking and pausing of innocent
flows. Furthermore, the performance advantage of FLOWSAIL
increases with increasing load. HPCC becomes unstable at
80%, and thus we exclude its value at that load.

(ii) Web Server workload without incast. We repeat the
previous experiment in Fig. 10 without the incast traffic and
present results in Fig. 11. Without incast traffic, the perfor-
mance gap between FLOWSAIL and other schemes narrows
as the bursty congestion and contention to physical queue
issues mitigate. Despite this, FLOWSAIL outperforms all other
schemes, e.g., achieving up to 3.1×, 3×, 1.6×, 1.75×, 1.3×
lower tail latency for short flows compared with Timely,
DCQCN, DCTCP, HPCC, and BFC, respectively (Fig. 11a).
FLOWSAIL also maintains higher throughput for large flows,
such as up to 2.2× higher and comparable throughput com-
pared with HPCC and BFC, respectively. Note that the poor
performance of HPCC on large flow is due to HPCC explicitly
trading off throughput for latency and INT header consuming
extra bandwidth, as also mentioned in the HPCC paper [9].

C. FLOWSAIL Deep Dive

Performance under the Web Search distribution. We first
evaluate FLOWSAIL under the Web Search distribution with
a fixed 60% load and 6% incast traffic, and then measure the
throughput of large flows with various traffic loads.

(ii) Web Search distribution with a fixed load. The Web
Search distribution is characterized by a large number of
concurrent long-running flows, resulting in the contention of
queues with short flows. Thus, BFC exhibits poor tail latency
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for short flows, as the presence of long-running flows degrades
the short flows in the same queue. In this context, reducing the
rates of long-running flows greatly benefits short flows, leading
to lower latency for DCQCN and DCTCP compared to BFC.
In contrast, FLOWSAIL outperforms DCQCN and DCTCP by
achieving a 2.7× reduction in latency of short flows; this is
because FLOWSAIL’s fine-grained control prevents innocent
pausing and blocking of short flows. As explained later, FLOW-
SAIL could potentially decrease throughput for large flows,
compared to BFC. Therefore, we recommend using FLOW-
SAIL in conjunction with end-to-end CC to simultaneously
handle the transient bursts and long-running flows. Fig. 12
illustrates that CC+FLOWSAIL yields the best performance.

(ii) Throughput with various loads. We vary the average load
from 0.4 to 0.8 and measure the average FCT slowdown for
large flows. As shown in Fig. 13, FLOWSAIL experiences re-
duced throughput for large flows across all load levels. This is
because large flows in BFC could unfairly occupy buffer space,
leading to improved throughput. In contrast, FLOWSAIL en-
sures fairness through isolation. Notably, FLOWSAIL actually
compresses congested flows’ space rather than that of large
flows, so there is no absolute trade-off between throughput and
latency. To illustrate, the throughput gap between FLOWSAIL
and BFC in the Web Server distribution (Fig. 10c) is minimal.
However, in Web Search, where large flows dominate, a higher
percentage of large flows experience congestion, resulting in
more significant degradation.
Impact of incast degree. We compare the performance of
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FLOWSAIL-8Q against BFC-8Q and BFC with 32 queues
(BFC-32Q), under a Web Server distribution with a 60% fixed
load and varying incast degrees. The results shown in Fig. 14
show FLOWSAIL is more resilient to incast degrees compared
to BFC; FLOWSAIL achieves comparable performance with
4× fewer queues (8 vs. 32). Under the same number of queues,
FLOWSAIL-8Q attains 3.0×∼3.8× lower tail latency for short
flows when the incast degree exceeds 100, and 1.3× higher
throughput for large flows, compared to BFC-8Q.
Impact of the number of available queues. The experiment
in Fig. 14 is repeated with a fixed 50-to-1 incast degree, but
the number of queues is varied from 2 to 128. We measure
the average FCT for all flows. As Fig. 15 reveals, FLOWSAIL
is more resilient to the number of queues compared to BFC,
achieving satisfactory performance even with a minimum of
2 queues. For instance, FLOWSAIL experiences a more gentle
degradation compared to BFC when the number of queues
reduces and achieves up to 20× lower FCT than BFC at 2
queues. Note that configurations with different queue num-
bers possess the same transmitting capacity per port, so the
performance degradation arises from the severe interference
between flows within the same queue.
Parameter sensitivity. We conduct evaluations to ascertain
how the two pausing thresholds Qh and Ql influence the
performance of FLOWSAIL. First, we fix Qh at 3 Hop-BDP
(HBDP) and vary Ql (Fig. 16a), then, we fix Ql at 1 HBDP
and adjust Qh (Fig. 16b), under a 50-to-1 incast degree. The
results suggest that Ql primarily impacts the control of queue
length, with a smaller Ql leading to a shorter queue length.
Once Ql effectively manages congestion, Qh has little effect;
for instance, no queue length difference occurs between 3
and 4 HBDP Qh. Nevertheless, Qh remains necessary as a
safeguard in extreme cases. For instance, in Fig. 16c, which
illustrates an extreme 250-to-1 incast degree, Qh significantly
influences queue length control. It is crucial to note that the
continuous shallow (or even zero) queue length can lead to
under-utilization of bandwidth [9], [10], [13]. Hence, we set
the values of Ql and Qh to 1 and 3 HBDP respectively, rather
than other lower values.

VII. LIMITATION AND RELATED WORK

FLOWSAIL Limitation. Since FLOWSAIL utilizes a single
reserved queue for all congested flows at a port and ensures in-
order delivery through Order Mark Matching, the potential for
HoL blocking exists among congested flows. This is because
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a congested flow may need to wait for the congested flows
ahead of it to find a matched Order Mark.
Related Works. Firstly, numerous studies have attempted
to address PFC’s limitations [18], [39]. However, these PFC-
based approaches inherit the static mapping feature of PFC.
That is, the mapping between traffic and queues is statically
configured using constant packet tags. In contrast, FLOWSAIL
provides a more flexible solution. It is worth noting that
CBFC [15] suffers from similar coarse-grained granularity
issues. Secondly, proactive CCs [11], [23], [40], [41] enable
receivers to allocate credits to senders in advance of data
transmission. However, they struggle either with wasting the
first RTT or risking congestion reoccurrence. In contrast, per-
hop FC utilizes switches to enable timely control decisions.
Finally, FLOWSAIL does not require exclusive deployment and
can be combined with priority-based scheduling [42].

VIII. CONCLUSION

In this paper, we introduce FLOWSAIL, an innovative flow
control scheme that enables fine-grained control at the per-
flow level without the requirement of per-flow queues. The
core of FLOWSAIL is to effectively approximate the ideal
FC’s behavior at both the congested port and upstream port
through its key design components. Extensive prototype exper-
iments and simulations demonstrate the superior performance
of FLOWSAIL compared with the state-of-the-art FC scheme,
BFC, and end-to-end CCs.
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