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Abstract—Various datacenter network (DCN) load balancing
schemes have been proposed in the past decade. Unfortunately,
most of these solutions designed for lossy DCNs do not work well
for Priority Flow Control (PFC) enabled lossless DCNs, primarily
due to the reason that the individual congestion signals used in
these solutions, e.g., link load, queue length, Round Trip Time
(RTT) and Explicit Congestion Notification (ECN), may not be
able to correctly or timely reflect the hop-by-hop PFC pausing.

This paper first reveals the above problems via extensive
experiments, and then based on the insights learned, we present
Proteus, a PFC-aware load balancing scheme that is resilient
to PFC pausing by exploring a combination of multi-level
congestion signals. At its heart, Proteus leverages RTT-level
signals (i.e., RTT and link utilization) to detect path status for
initial routing decision, and exploits sub-RTT level signal (i.e.,
cumulative sojourn time) to reflect instantaneous PFC pausing
and make timely rerouting choices based on the idea of better-
late-than-never. We have implemented Proteus in the hardware
programmable switch. Our testbed experiments as well as large-
scale simulations show that Proteus can effectively handle PFC
pausing under realistic workloads and achieve up to 35%, 31%,
28%, 22% and 46%, 42%, 34%, 29% better average FCT and
99

th percentile FCT than CONGA, DRILL, Hermes and MP-
RDMA, respectively.

Index Terms—Datacenter, Lossless Networks, Load Balancing

I. INTRODUCTION

Driven by the stringent demands for ultra-low latency

and high throughput from datacenter applications such as

distributed storage and machine learning training [1]–[10],

reliable lossless networks without packet loss are increasingly

crucial in Ethernet-based DCNs deployed with Remote Direct

Memory Access (RDMA) [11]–[15]. RoCEv2 (RDMA over

Converged Ethernet), the de-facto standard protocol for high-

speed networks, relies on hop-by-hop PFC to prevent buffer

overflow caused by network congestion [16]–[20].

In the meanwhile, to strive to balance the ever increasing

traffic over multiple equal-cost paths in DCNs, a rich body

of load balancing schemes [21]–[26] have been proposed

in the past decade. However, these existing load balancing

solutions designed for lossy DCNs with packet loss do not

work well for PFC-enabled lossless DCNs. As shown in

Table I and experimentally demonstrated in §II, the crux is that

the introduction of PFC would invalidate congestion signals in

interpreting network congestions as before. In particular, we

make the following observations:

• First, link load used in the schemes such as CONGA [21]

cannot reflect PFC pausing correctly. A path with low link

utilization due to PFC pausing is a bad path, but it may be

misinterpreted as a good path without congestion.

TABLE I: Issues of congestion signals in the prior load

balancing solutions in PFC-enabled DCNs.

Congestion

Signals

Existing

Schemes

Issues in PFC-enabled

Networks

Link load
CONGA [21]
HULA [22]

Low link load due to PFC
pausing is misinterpreted as

good

End-to-end signals
(RTT, ECN)

Hermes [23]
MP-RDMA [15]

Stale for hop-by-hop PFC
pausing due to control loop

Local queue length DRILL [24]
Cannot sense remote PFC

pausing

• Second, schemes such as Hermes [23] using end-to-end

signals (RTT and ECN) to decide forwarding path cannot

detect PFC pausing timely due to the intrinsic RTT-level

feedback loop. In such case, a path with larger delay is not

necessarily a worse path, as PFC may have just resumed.

• Third, local queue-based schemes such as DRILL [24]

cannot reflect remote PFC pausing on a path, and thus a

local egress port with smaller queue length is not necessarily

a better path.

We will show that prior load balancing schemes can inflate

FCT by up to 49% in PFC-enabled networks due to the well-

known PFC’s head-of-line (HoL) blocking problem (§II-B).

Based on the above observations, we propose Proteus, a

PFC-aware load balancing scheme for lossless DCNs that

works with the hop-by-hop PFC pausing (§III). At its heart,

Proteus leverages RTT-level signals (RTT and link utilization)

to identify the path state for the initial routing decision, and

explores sub-RTT level signal (cumulative sojourn time—

the cumulative queueing delay of a packet on consecutive

switches on the path) for timely rerouting when experiencing

unexpected PFC pausing.

Specifically, Proteus divides paths into three categories, i.e.,

non-congested path, congested path, and undetermined path,

and uses RTT-level signals to capture the link status and

distinguish the path category. We treat the path suffering PFC

pausing as undetermined since the pausing may be short or

long lasting. For non-congested paths, both RTT and link

utilization are low; for congested paths, RTT is high due to

queueing delay and the link is fully utilized; for undetermined

paths where PFC has occurred, RTT is high due to queueing

delay and the link utilization is less than 100% due to PFC

pausing. Thus the combination of these two signals is able to

indicate the path state at a coarse granularity in PFC-enabled

networks, and guide the initial path selection in Proteus.

Furthermore, Proteus explores sub-RTT level signal, i.e., a

packet’s cumulative sojourn time (CST), to timely handle hop-979-8-3503-0322-3/23/$31.00 ©2023 IEEE



by-hop PFC pausing with the observation that the duration of

a PFC pausing is unpredictable and prematurely kicking out

the path may lead to a sub-optimal performance especially

when the PFC pausing is short (§II-B). Therefore, when

experiencing PFC pausing, Proteus follows the idea of better-

late-than-never, which will reroute the packet only when the

CST of the paused packet exceeds a maximum acceptable

delay. Once the packet is rerouted, Proteus removes the paused

path from the current available forwarding paths to avoid

continuous HoL blocking.

We have implemented a Proteus prototype in a hardware

programmable switch (§IV), and built a small-scale testbed to

evaluate the effectiveness of Proteus (§V-A). To complement

small-scale testbed experiments, we further conducted large-

scale NS-3 simulations under realistic workloads to validate

the performance of Proteus at scale (§V-B).

Overall, this paper makes the following contributions:

• We are among the first to conduct an extensive simulation

study to reveal the issues of three typical congestion signals

of existing load balancing schemes in PFC-enabled DCNs

(§II-B): 1) link load cannot reflect PFC pausing correctly;

2) end-to-end signals cannot detect PFC pausing timely; 3)

local queue cannot sense remote PFC pausing.

• We propose a PFC-aware load balancing scheme Proteus

(§III), which makes forwarding decisions based on both

RTT and sub-RTT level signals. Proteus chooses the initial

best path based on RTT and link utilization. When packets

are blocked due to PFC pausing, instead of switching path

instantly or never, Proteus carefully considers whether to

invalidate the current path according to CST and reroute

packets based on the idea of better-late-than-never.

• By using both testbed implementation (§IV) and NS-3

simulations (§V), we demonstrate that Proteus significantly

outperforms prior schemes. For example, under the Web

Search workload [34], Proteus reduces the average flow

completion time (AFCT) and 99
th percentile FCT by up to

35%, 31%, 28%, 22% and 46%, 42%, 34%, 29% compared

to CONGA, DRILL, Hermes and MP-RDMA, respectively.

Especially, Proteus achieves up to 1.8x reduction of AFCT

for short flows less than 100KB.

The rest of this paper is organized as follows. §II explores

problems. §III describes Proteus design. §IV gives the im-

plementation of Proteus. §V presents testbed and simulation

results, and §VI discusses related works before we conclude

the paper in §VII.

II. PROBLEM EXPLORATION

A. PFC is Triggered Even with Congestion Control

PFC mechanism. To guarantee lossless transmission, Con-

verged Enhanced Ethernet (CEE) employs the hop-by-hop

flow control mechanism PFC defined by IEEE 802.1Qbb [27].

Once the ingress queue length exceeds a specified threshold,

the switch sends PFC PAUSE to upstream related egress ports

or queues to stop data transmission until receiving PFC RE-

SUME to guarantee lossless transmission. Since PFC pausing

P4P3
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C2C1

S2 R2 R1

Core Switch

Leaf Switch

Servers

Fig. 1: Typical network scenario. The flows (in yellow) sent

to the receiver R2 are responsible for the congestion at the

ingress port P5/L3. The flow f1 (in blue) sent to the receiver

R1 is not responsible for the congestion at P5/L3.

is based on port or queue, the coarse reaction to congestion

causes the well-known problems such as HoL blocking and

congestion spreading [11]–[14], [28].

PFC is triggered under bursty traffic. Recent proposed

end-to-end transport protocols can efficiently control non-

transient congestion and thus effectively reduce PFC trigger-

ing [11], [12], [29]–[31]. However, transient congestion caused

by bursty traffic is widespread [9], [10], [32], [33]. Recent

research reveals that over 60-90% short-lived flows usually

finish within one RTT in modern DCNs [34]–[36]. It is hard

for end-to-end transports to control bursy traffic, resulting in

inevitable PFC triggering.

Fortunately, we can employ in-network load balancing to

rapidly react to PFC pausing. However, although the existing

load balancing schemes work well in lossy DCNs, they are

inadequate to handle hop-by-hop PFC pausing in lossless

DCNs as we will demonstrate in the following.

B. Problem Demonstration

To explore the drawbacks of three typical congestion signals

used by existing load balancing schemes in lossless DCNs, we

first conduct NS-3 simulations in a common Clos topology as

shown in Fig. 1. The link capacity is 40Gbps, and the switch

buffer size is 9MB with PFC enabled. We adopt DCQCN [11]

as the underlying transport protocol and set parameters to the

default values recommended in [11].

Traffic pattern: As shown in Fig. 1, there are two equal-cost

paths between leaf switches L1 and L3, i.e., Path1 {P1/L1,

C1, L3} and Path2 {P2/L1, C2, L3}. The innocent flow f1
(in blue) that is not responsible for congestion is sent from

the sender S1 to the receiver R1. The bursty congested flows

(in yellow) that really cause congestion are sent intermittently

from the sender S2 to the receiver R2. Meanwhile, 14 hosts

under L3 also send bursty flows at line rate to the same

receiver R2. The background flows (in gray) are transmitting

on Path1 from the source hosts under L1 to the destination

hosts under L3, which makes the existing load balancing treat

Path1 worse than Path2.

1) Link load cannot reflect PFC pausing correctly: The

congestion-sensitive load balancing schemes such as CONGA

[21] and HULA [22] detect path conditions by measuring link

load. They fare poorly in lossless DCNs, because the path
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Fig. 2: Rerouting based on link load (CONGA [21]).
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Fig. 3: Rerouting based on RTT and ECN (Hermes [23]).
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Fig. 4: Rerouting based on local queue (DRILL [24]).

experiencing PFC pausing is actually under-utilized, a path

with lower link load is not necessarily a better choice. So

link load cannot indicate path congestion correctly and even

mislead rerouting.

To quantify this impairment, we conduct simulations with

CONGA. The victim flow f1 is 20MB and bursty flow is

200KB. At time 1ms, 42 bursty flows from S2 and 588 bursty

flows under L3 are sent to R2. In Fig. 2a and Fig. 2b, 5

bursty congestion occurred intermittently on Path2, and PFC

is triggered on the ingress port P5/L3 and spread to P3/C2.

Fig. 2c shows that the link utilization of Path2 is less than that

of Path1 with real congestion. In Fig. 2d, CONGA always

allocates the packets of f1 to Path2 with the lower measured

link utilization, resulting in HoL blocking. The ideal solution

knows in advance that PFC will triggered multiple times on

Path2 and does not choose Path2, achieving the lowest FCT.

2) End-to-end signals cannot detect PFC pausing timely:

For the typical load balancing scheme using end-to-end con-

gestion signals, such as Hermes [23], it leverages RTT and

ECN to convey path congestion. Although these two signals

capture the queueing delay, they cannot reflect PFC pausing

in time due to the intrinsic control loop of at least one RTT,

and even these signals blocked by PFC PAUSE can be slowly

fed back to the end-hosts only after PFC resuming. When the

congestion signals arrive at the source hosts, PFC may have

just resumed, so a path with larger delay may be a good one.

To understand such impact, in this experiment, f1 is 120MB

and each bursty flow is 200KB. At time 10ms, 45 bursty flows

from S2 and 635 bursty flows under L3 are continuously

sent to R2. Fig. 3a shows that PFC PAUSE frames are

sent from P5/L3 to P4/C2 continuously and spread from

P3/C2 to P2/L1 during bursty congestion. Fig. 3b shows

packets on Path2 are marked by ECN during PFC triggering,

while packets on Path1 are marked continuously due to

real congestion. In Fig. 3c, the RTT of Path2 is increased

significantly due to PFC pausing. Thus, Hermes preferentially

selects Path2 with small RTT and ECN at the beginning, and

it forwards packets to Path1 once the RTT of Path2 is much

larger than Path1 shown in Fig. 3d. However, such a late

rerouting based on the staled signals damages performance.

On the contrary, FCT with prescient rerouting in the ideal

case is better than Hermes by up to 26%.

3) Local queue cannot sense remote PFC pausing: For

a local queue-based scheme DRILL [24], it purely relies on

local queue length to make forwarding decisions to deal with

microbursts quickly. Since there is no any coordination among

switches, it cannot sense the remote PFC pausing, potentially

leading to serious HoL blocking at the downstream switches

and even inability to reroute. The local queue-based switching

is oblivious to remote PFC pausing, a local egress port with
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Fig. 5: Kick out the path with PFC pausing.

smaller queue is not necessarily a better choice.

Next, to illustrate the above issue, we show a case study. At

the beginning, f1 with 20MB starts at line rate. At time 1ms,

26 bursty flows from S2 and 56 bursty flows under L3 with

each flow size of 200KB are intermittently sent to R2, with a

total of 5 bursts. In Fig. 4a and Fig. 4b, when each bursty traffic

starts, the queue length of ingress port P5/L3 is increased and

PFC PAUSE messages are sent from P5/L3 to pause the egress

port P4/C2. In this process, since the queue length of P3/C2
does not exceed the PFC threshold, PFC pausing is not spread

to the upstream switch L1. The queue length of P2/L1 is not

increased and is always lower than that of P1/L1 as shown

in Fig. 4c. Thus, based on the local queue to make routing

decision, DRILL always chooses P2/L1 to forward packets of

f1 on Path2 {P2/L1, C2, L3}, resulting in f1 suffering from

PFC’s HoL blocking and largest FCT, as shown in Fig. 4d.

To illustrate the potential performance improvement without

HoL blocking, we employ an ideal routing solution, which can

predict PFC triggering on Path2 and forward packets of f1
to Path1 without any HoL blocking. Fig. 4d shows the ideal

solution reduces FCT by up to 49%.

C. Kicking Out the Path with PFC Pausing Directly is Unwise

Intuitively, as long as the path where PFC is triggered, it

should be kicked out directly as an unavailable path. However,

for a short PFC pausing, it is wise to still choose this path.

To quantify this impact, we further conduct simulations with

CONGA in the same experiment settings as in the above

contrived example. The flow f1 is 250MB and bursty flow

is 200KB. At time 9ms, 2 bursty flows from S2 and 28 bursty

flows from 14 end-hosts under L3 are sent to R2.

Fig. 5a shows the duration of PFC pausing is very short. In

this experiment, CONGA always chooses Path2 with lower

link utilization. Even if the flow f1 experiences the transient

PFC pausing and suffers from a short throughput degradation,

it still obtains smaller FCT as shown in Fig. 5b. On the

contrary, if Path2 is kicked out arbitrarily and packets are

forwarded on Path1, FCT is increased by 53% due to the

real congestion on Path1. Therefore, it is unreasonable to

remove the path with PFC pausing directly from the available

valid paths, but it is necessary to carefully decide whether to

reroute according to the actual path conditions.

III. DESIGN

Given the above explored problems, the limitations of prior

individual congestion signals highlight the properties required

Fig. 6: Proteus overview.

for load balancing solutions in PFC-enabled DCNs. Therefore,

we aim to achieve the following three design goals: (1)

correctly reflect path states to guide load balancing decisions;

(2) timely sense the duration of PFC pausing to reflect the

hop-by-hop flow control; (3) flexibly reroute to balance traffic

and avoid continuous PFC’s HoL blocking.

To this end, we propose Proteus, a simple yet effective load

balancer for PFC-enabled DCNs. The key point of Proteus is

to make an initial load balancing decision based on the coarse-

grained RTT level signals, and decide whether to reroute by

using the fine-grained sub-RTT level signal when experiencing

PFC pausing. For the short transient PFC pausing, Proteus will

benefit more if it tolerates pausing delay without rerouting. On

the contrary, for the long continuous PFC pausing, Proteus will

decide to switch the path based on the idea of better-late-than-

never to avoid further PFC’s HoL blocking. Fig. 6 overviews

Proteus, which mainly contains two modules including the

sensing module and the rerouting module.

• Multi-level signals sensing (§III-A): Proteus first uses

RTT level signals (i.e., RTT and link utilization) to correctly

reflect path states and divide the paths into three categories

including non-congested path, real congested path and the

undetermined path with PFC pausing. Then Proteus uses

sub-RTT level signal (i.e., cumulative sojourn time, CST)

to rapidly reflect the hop-by-hop PFC pausing.

• (Re)routing (§III-B): Proteus makes load balancing de-

cisions based on the perceived path status detected by the

RTT level signals at the edge switches. When data packets

transmitting on the initial optimal path experience PFC

pausing, Proteus has opportunities to reroute according to

the sub-RTT level signal to avoid the packets being suffered

from continuous HoL blocking.

A. Multi-level Signals Sensing

RTT level signals: In PFC-enabled networks, in addition to

the congested and non-congested path states, there is also an

undetermined path state, which showing ON/OFF transmis-

sion pattern due to PFC pausing/resuming with under-utilized

link. Although the congestion signals such as link utilization,

queue length, RTT and ECN used seperately in the previous

load balancing schemes provide good performance in lossy

DCNs, they are insufficient to reflect different path states

simultaneously when used alone in the lossless DCNs with

PFC. For example, a path with link utilization less than 100%

does not necessarily indicate non-congestion. It may be that

PFC is triggered on the path, resulting in paused transmission.

Similarly, a small RTT can directly reflect a non-congested

path, while a large RTT does not necessarily mean that a path



TABLE II: Outcome of path states using RTT and link utilization.

RTT Link Utilization Possible Cause Characterization

Low <1 Under-utilized link
Non-congested path

Low =1 Fully-utilized link with no queueing
Moderate/High <1 PFC pausing with queueing Undetermined path

High =1 Highly loaded link with queueing Congested path

is congested. PFC may have resumed after a short pausing

and the path is no longer congested. Fortunately, RTT and

link utilization used together can nicely complement each

other in PFC-enabled DCNs. Therefore, Proteus detects path

conditions through the combination of RTT and link utilization

to well indicate the aforementioned different path states.
Specifically, based on RTT and link utilization, parallel

paths can be divided into the following three categories: (1)

non-congested paths with small RTT less than RTTlow, which

is set to be 20-40% times larger than one-way base RTT

to ensure that the path is lightly loaded [23], and small or

full link utilization; (2) undetermined paths with moderate or

high RTT larger than RTTlow and small link utilization; (3)

real congested paths with large RTT greater than RTTlow and

full link utilization. Table II summarizes the outcome of path

conditions and the reasons behind them.
However, in addition to the advantages of capturing three

different path states correctly in the PFC-enabled networks,

RTT and link utilization also have the disadvantage of stale

information due to end-to-end feedback delay. Therefore,

Proteus further leverages the sub-RTT signal to reflect the

transient congestion timely as shown below.
Sub-RTT level signal: To react to the transient congestion

timely, Proteus should make a rational decision whether to

switch path when encountering PFC pausing on the initial

optimal path selected based on the RTT level signals. The

high-level idea is that if the current path delay is much less

than other paths and PFC pausing is only transient, Proteus

prefers to tolerate the delay caused by PFC pausing rather

than switching paths to risk larger delay. In contrast, if the

PFC pausing lasts for a long time, timely rerouting will bring

more benefit to Proteus.
However, it is hard to accurately predict the duration of PFC

pausing as we cannot know the future congestion caused by

bursty traffic. But we can measure the elapsed time on the

path, i.e., the cumulative sojourn time (CST), which refers to

the cumulative time consumed by a packet transmitting on a

path over multiple switches. Then we can determine whether

it is necessary to reroute based on the idea of better-late-than-

never to avoid continuous HoL blocking. Therefore, Proteus

further tracks the CST of per-packet at sub-RTT timescale for

rerouting to handle bursty PFC pausing timely. Specifically, if

the CST is less than the tolerate delay, Proteus still chooses the

initial optimal path. Otherwise, Proteus kicks out the current

path with PFC pausing and triggers rerouting.

B. (Re)routing

Given multi-level signals sensing, how to balance load flexi-

bly and deal with the burst PFC pausing rationally are still non-

trivial. The challenges are as follows: First, in case of uncertain

duration of PFC pausing, it is difficult to determine whether

it is benefit to directly reroute or continue wait to tolerate

queueing delay. Second, prior flowlet switching is to passively

wait for the rerouting chance based on the fixed flowlet timeout

and cannot flexibly balance load due to rare flowlets caused

by rate smooth [15]. Third, the finest-grained packet switching

is extremely easy to introduce disorder packets, while the

simple go-back-N retransmission mechanism will significantly

degrade the performance of applications in the PFC-enabled

RDMA networks [54]. Proteus addresses the above challenges

with careful (re)routing design by employing both RTT level

and sub-RTT level signals.

Algorithm 1: Routing based on RTT level signals

Input:
tpre, tcur: The arrival time of previous & current packet;
tpd, ulink: The one-way delay & link load of a path;

1 for every packet do
2 Assume its corresponding flow is f and path is p;
3 if f is a new flow then
4 SelectPath(Active Paths Status);

5 else

6 {P′} = all paths with less delay than p;
7 /*∀p′ ∈ {P′},0 < p.tpd − p′.tpd < f.tcur − f.tpre*/
8 if {P′} 6= ∅ then

9 SelectPath(Paths{P′} Status); /* Reroute */

10 else
11 p∗ = p; /* Do not reroute */

12 Function SelectPath(Active Paths Status) is

13 {P′} = non-congested paths;
14 {P′′} = undetermined paths occurred PFC;
15 {P′′′} = congested paths;
16 if {P′} 6= ∅ then p∗=Argminp∈{P′}(p.tpd) ;
17 else

18 if {P′′} 6= ∅ then p∗=Argmaxp∈{P′′}(p.ulink) ;
19 else
20 p∗ = Argminp∈{P′′′}(p.tpd);
21 end
22 end
23 return p∗ ;
24 end

Routing based on RTT level signals: Proteus selects the

initial best forwarding path from the three types of paths (i.e.,

non-congested path, undetermined path, and real congested

path) in order of priority based on the RTT and link utilization

at the edge switches. The routing logic of Proteus based

on RTT level signals is illustrated in Algorithm 1, which is

triggered at edge switches for the cases of a new flow packet

arriving or the current path is congested (lines 3-11). When

Proteus makes a load balancing decision, it selects the best

path from three path sets (lines 13-15) in turn. That is, Proteus

first tries to select an available (pactive==1) non-congested



path with the minimum RTT (line 16). If it fails, Proteus

chooses an available undetermined path with the maximum

link utilization (line 18), which is likely resumed transmission

quickly. The lowest priority choice of Proteus is the path

with the minimum RTT among the remaining available real

congested paths (line 20).
To preserve orderly transmission, the initial selected path

should ensure that the current packet arrives at the receiver

later than the previous packets with smaller sequence number

belonging to the same flow. For non new flow packets, Proteus

calculates the time interval between the current packet and

the last forwarded one in the same flow, and then selects

the rerouting path only in the set of paths with the path

delay difference less than the time interval (lines 6-7). In

this way, the current packet is rerouted to a better path with

smaller delay to reach the receiver faster, but it will arrive

in an orderly manner after the previous packets with smaller

sequence number belonging to the same flow. Unlike existing

schemes, there is no preset threshold.
The initial selected path ID is recorded in the packet

header, and then the packet is forwarded to the designated

path by using source routing [37]. Moreover, the packet also

carries multiple alternative sub-optimal path IDs with the

priority order for efficient and orderly rerouting at downstream

switches, which will discuss later.

Algorithm 2: Rerouting based on sub-RTT level CST

Input:
ttd: Tolerable delay; tenqueue: The enqueue time;

1 for every packet do
2 Assume its forwarding path is p;
3 Predict the minimum queueing delay tqd;
4 if PFC pausing then
5 if ttd <tqd then
6 Wait to be forwarded at time tdequeue;
7 ttd = ttd - (tdequeue - tenqueue);

8 else
9 Trigger rerouting;

10 pactive = 0; /* kick out path p */

11 return pactive

Rerouting based on sub-RTT level signal: Each packet has

opportunity to be rerouted at the downstream switches based

on sub-RTT level signal CST. When a packet encounters a

long enough PFC pausing on the current path, Proteus reroutes

the packet to the next alternative available path carried in the

packet header at downstream switches. As a result, all rerouted

packets are sent to the same path, so that it can preserve an

orderly transmission. The Algorithm 2 illustrates the detailed

process of sensing PFC pausing by using sub-RTT level signal

CST. Specifically, each packet header carries a tolerable delay

ttd spending on switches over the path p, which is the delay

difference between the optimal and sub-optimal paths. After

arriving the ingress port, the packet first predicts the minimum

queuing delay tqd based on the current destination egress port

queue. Then, if ttd is less than tqd, the packet waits to be

forwarded. The tolerable delay ttd is updated by subtracting

the sojourn time [38]–[40] at the current switch (lines 5-7),

which is the time it takes from arriving at the switch to

leaving the switch. Otherwise, if the packet’s sojourn time

tqd exceeds ttd, Proteus triggers rerouting and kicks out the

path p (Pactive=0) (lines 9-10) until PFC resuming.

Theoretically, piggybacking enough path IDs can ensure

rerouting to an available path, but it introduces more bytes

overhead. To limit the extra overhead in the packet header,

each packet in Proteus carries 3 alternative path IDs, which

can effectively support rerouting with affordable cost in the

evaluation (§IV). In the extreme cases, if there is no effective

alternative path for rerouting, the packet will not switch path,

which rarely occurs (§V-B).

C. Theoretical Analysis

Proteus makes rerouting decisions on the fly without know-

ing in advance how long the data transmission can be resumed

after PFC pausing. We use the classical rent-or-buy problem1

with online decision-making [41] as the context of Proteus.

To theoretically analyze the rerouting strategy of Proteus,

we assume that the path delay of the initial optimal path

selected according to RTT level signals is Dpo, and the

suboptimal path delay is Dps. After the packets are forwarded

on the initial optimal path, if they experience the bursty hop-

by-hop PFC pausing due to transient congestion, and it is hard

to predict how long PFC pausing will last, they need to decide

whether and when to reroute. This rerouting problem is the

same as rent-or-buy where rerouting is like buy, waiting on

the initial optimal path with PFC pausing is like renting, and

PFC resuming is like the last skiing. Therefore, the optimal

strategy is: if the packets know the PFC pausing duration will

exceed the delay difference between the initial optimal path

and the suboptimal one, they should reroute at the beginning. If

the packets know PFC pausing time is very short, they should

just waiting on the initial optimal path to tolerate the pausing

delay. But, what if the packets do not know? How long should

the packets wait until they give up and decide to reroute?

We use the competitive ratio to discuss the quality of the

online algorithm for Proteus. The competitive ratio of an

online algorithm ALG is the ratio of the cost of ALG on

the instance I (i.e., ALG(I)) to the minimum possible cost

of ALG on the instance I (i.e., OPT (I)), that is,
ALG(I)
OPT (I) .

As demonstrated in the above scenario, we only consider

that PFC pausing will always end and PFC resuming frames

will always be received. For such a deterministic algorithm

when Dps is larger than Dpo, the algorithm better-late-

than-never (i.e., wait until the packets realize they should

have rerouted at the start, then reroute) is a nice strategy.

Specifically, the packets wait for Dps − Dpo on the initial

optimal path at most, and then they decide to switch path.

If PFC pausing is finished in less than Dps − Dpo, the

competitive ratio is 1. Otherwise, OPT (I) is Dps, and the

1Suppose you are going to start skiing. You can either rent skis at a low
price or buy them at a high price. Since you don’t know how many times you
will go skiing in the future, you just decide to rent at the start. After going
skiing many times, you realize that the cost of renting is about to exceed that
of buying. You wish you had bought right at the beginning.



competitive ratio is
Dps−Dpo+Dps

Dps

= 2−
Dpo

Dps

, which is less than

2. If the packets wait longer than better-late-than-never, the

numerator of the competition ratio ALG(I) increases, while

the denominator OPT (I) remains unchanged, thus the ratio is

worse. Therefore, the algorithm better-late-than-never has the

best competitive ratio in this case.

IV. IMPLEMENTATION

Proteus dataplane: We have implemented a Proteus pro-

totype on a hardware programmable switch with the type

of Wedge 100BF-32X by using programming protocol-

independent packet processors (P4) language [42]. The packet

processing ingress pipeline primarily contains a series of

exact match-action tables and stateful ALUs to implement

the logic of delay difference comparison, rerouting decision

and forwarding port selection. The challenges of implementing

Proteus on hardware P4 platform is to ensure that the limited

resources are accessed exclusively in all stages of the pipeline.

Specifically, in the flow table, each entry consists of a 16-

bit flow ID calculated by a cyclic redundancy check (CRC 16)

hash function based on the unique five tuples, 24-bit timestamp

for the last forwarded packet, 12-bit selected path ID [31],

three 12-bit alternative path IDs and 2-bit path status. For each

packet arriving at the switch, if the packet matches an existing

flow ID, the delay difference between the packet interval and

path delay is compared by using blackbox stateful ALUs. Then

the packet takes action to select forwarding path according to

the path status read from the flow table. The 12-bit selected

path ID, three 12-bit alternative path IDs and 24-bit tolerable

delay are inserted in the metadata, so the total byte overhead

is 9 bytes, which is only 0.9% in a 1KB packet. If the sojourn

time exceeds the tolerable delay, the packet reroutes and set

the initial forwarding path to invalid with the path state value

of 2-bit 00. Otherwise, the matching action for the packet is

direct forwarding without rerouting.

Resource consumption: Table III shows the hardware re-

source usage of the packet processing pipeline at the pro-

grammable switch under four load balancing schemes. Proteus

uses more match-action tables and stages in the pipeline to

implement the logic of comparison and calculation. These

operations require more stateful ALUs and SRAM, results in

higher resource consumption such as match crossbar, gate-

way, SRAM and ALU instruction. In brief, compared with

ECMP [43], DRILL [24] and CONGA [21], Proteus consumes

more hardware resources due to fine-grained rationally rerout-

ing. However, the limited resource consumption is acceptable

compared with the benefits of load balancing.

Practical deployment: Proteus is deployed on each switch

working for RoCE traffic with PFC and not affecting other

non RoCE traffic. To reduce deployment overhead in the multi-

tier topology, Proteus only maintains the path status of each

end-to-end path specified by a unique path ID [44] at the edge

switches. The delay and link utilization (the ratio of throughput

to link speed) of the paths are measured at the destination edge

switches over a certain period (e.g., RTT) and piggybacked by

the packets passing through the reverse path [21].

TABLE III: Resource consumption of load balancing schemes.

Resource ECMP DRILL CONGA Proteus

Match Crossbar 2.41% 4.24% 6.6% 7.05%
Hash Bits 3.08% 4.05% 6.04% 6.34%
Gateway 1.39% 3.13% 6.96% 8.18%
SRAM 1.56% 3.74% 4.72% 5.17%

VLIW Actions 1.56% 2.52% 4.21% 4.93%
ALU Instruction 2.6% 5.16% 6.72% 8.4%

V. EVALUATION

In this section, we evaluate Proteus using a combination

of testbed experiments and large-scale NS-3 simulations to

answer the following three questions:

• How does Proteus perform in practice? Testbed exper-

iments (§V-A) show that Proteus can achieve low latency

with varying traffic loads and link speeds. Specifically, Pro-

teus outperforms ECMP, CONGA and DRILL in terms of

AFCT by up to 3x, 65% and 30%, respectively. Moreover,

Proteus achieves up to 1.8x AFCT for short flows compared

with other schemes.

• How effective is Proteus in large-scale DCNs? In

large-scale NS-3 simulations (§V-B), we show that Proteus

generally achieves the lowest AFCT and tail latency. For

example, compared to CONGA, DRILL, Hermes and MP-

RDMA, Proteus reduces up to 35%, 31%, 28%, 22% and

46%, 42%, 34%, 29% for AFCT and 99th percentile FCT

under Web Search, respectively.

• How robust is Proteus to network settings? Deep dive

experiments (§V-C) show that Proteus maintains persistent

good performance with varying piggybacked alternative

paths, and is robust to transport protocols.

Baseline: We compare ECMP [43], CONGA [21], Hermes

[23], DRILL [24] and MP-RDMA [15] with Proteus. DCQCN

[11] is deployed as the default congestion control scheme,

which is implemented by using DPDK 20.08 [45] on the

testbed. All the parameters are set as recommended in the

corresponding paper. We use reordering buffer to mask packet

reordering2 [23], [25].

Benchmark traffic: We use four widely-used realistic work-

loads including Web Server (WSv), Cache Follower (CF), Web

Search (WSc) and Data Mining (DM) with heavy-tailed distri-

bution in production datacenters [47]–[51]. The average flow

sizes are 64KB, 701KB, 1.6MB and 7.41MB, respectively.

Specifically, about 81%, 53%, 62% and 83% flows are less

than 100KB, and 0%, 29%, 20% and 9% flows are larger than

1MB, respectively. All flows are generated between random

sources and destinations following Poisson process.

A. Testbed Experiments

Testbed setup: We built a small testbed that consists of 8

servers (Dell PRECISION TOWER 5820 desktop) connected

2Although there is a trend to support reordering buffer in RDMA NICs
[15], [54], most commodity RDMA NICs still use go-back-N retransmission
scheme to deal with out-of-order packets. In this scenario, the baseline
performance will be worse due to the severe penalty incurred by out-of-order
packets, while Proteus can remain the same performance due to its order-
preserving rerouting.
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Fig. 7: Average and 99th percentile flow completion time for Web Search.

to the Wedge 100BF-32X hardware P4 switches for a 2×8

leaf-spine topology as used in prior work [21], [23]. Each

server has 10 cores Intel Xeon W-2255 CPU, 64GB memory

and Mellanox ConnectX5 100GbE NICs. All servers run

Ubuntu 20.04.1 with Linux version 5.4.0-42-generic. Each

switch is equipped with 32 full duplex 100Gbps ports sup-

porting DPDK and 22MB shared buffer. PFC is enabled with

dynamic threshold. The default link capacity is 40Gbps.

Basic results: Fig. 7 shows the average and 99th percentile

FCT for Web Search workload. First, we find that Proteus

performs increasingly better (2x-3x) FCT compared to ECMP

[43] as the load increases as shown in Fig. 7a. This is as

expected because ECMP is insensitive to path congestion and

the hash collisions make PFC trigger more frequently, resulting

in serious HoL blocking. Moreover, Proteus achieves up to

37% lower overall FCT at 0.7 load compared to CONGA. This

is because CONGA incorrectly selects the path with low link

utilization caused by PFC pausing, while Proteus can correctly

choose the initial optimal path according to both RTT and link

utilization signals. Also, we observe that Proteus outperforms

DRILL by up to 30% in terms of AFCT with varying load.

This is because DRILL cannot detect PFC pausing at the

downstream switches and potentially selects worse path, while

Proteus can further reroute based on the sub-RTT level signal

cumulative sojourn time.

Another observation is that Proteus improves the perfor-

mance of short flows less than 100KB by up to 1.8x, which is

better than that of long flows larger than 1MB (by up to 51%)

in Fig. 7b and Fig. 7c. The reason is that PFC pausing delay

experienced by small flows accounts for a larger proportion in

FCT. Proteus also achieves the lowest 99th percentile FCT as

shown in Fig. 7d. This is because Proteus not only performs

PFC-sensitive routing based on RTT and link utilization, but

also can further make rerouting decisions based on CST to

avoid continuous blocking.

Impact of link speed: We repeat the above experiments under

70% load with varying link speeds. The results are shown in

Fig. 8 (a) and Fig. 8 (b). First, we observe that the performance

of CONGA deteriorates under the lower link speeds such as

10Gbps and 25Gbps. This is because PFC pausing time is

longer, and the packets are mistakenly forwarded on the path

with lower link utilization caused by PFC pausing, resulting

in HoL blocking and large tail FCT. Moreover, we observe

that Proteus achieves up to 20% and 23% lower average FCT

(a) Average FCT (b) 99th percentile FCT

Fig. 8: FCT with varying link speeds.

and 99th percentile FCT than DRILL at 10Gbps, respectively.

The performance of DRILL under lower bandwidth is close

to that of Proteus than CONGA. The reason is that when PFC

pausing triggered at the downstream switches is passed back

to the upstream switches in a hop-by-hop manner, DRILL can

make correct routing decisions. In brief, Fig. 8 (a) and Fig.

8 (b) show that Proteus outperforms other schemes, because

Proteus can choose appropriate forwarding path initially and

rationally decide to reroute in the better-late-than-never way

to avoid the negative impact of PFC pausing.

B. Large-scale NS-3 Simulations

Simulation setup: Same as [23], we use a 8×8 leaf-spine

topology with 128 hosts connected by 100Gbps links. The

switch buffer size is set to 12MB and PFC is enabled with

dynamic threshold as suggested in [11]. We further run large-

scale NS-3 simulations to evaluate the performance of Proteus.

Overall: In Fig. 9, the results indicate that Proteus senses

and reacts to path congestion effectively in PFC-enabled

networks. Because after Proteus selects initial path based

on RTT level signals, Proteus carefully considers whether to

reroute according to sub-RTT level signal once experiencing

burst PFC pausing, rather than rerouting arbitrarily or staying

on the paused path all the time. For example, in Web Search

workload, as the traffic load increases, Proteus outperforms

CONGA, DRILL, Hermes and MP-RDMA on AFCT and 99th

percentile FCT by up to 35%, 31%, 28%, 22% and 46%, 42%,

34%, 29%, respectively.

Another observation is that CONGA and Hermes behave

very differently across four workloads. The reason is that PFC

pausing time is relatively short under the Web Server and

Cache Follower workloads. Hermes uses stale end-to-end con-

gestion signals to guide routing, resulting in many unnecessary

rerouting and missing many good paths after PFC resuming. In

Web Search and Data Mining workloads, if PFC pausing lasts
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Fig. 9: Overall average and 99th percentile FCT under realistic workloads with varying traffic load.

(a) Web Server (b) Cache Follower (c) Web Search (d) Data Mining

Fig. 10: The 99th percentile slowdown as a function of flow size for small flows (0 - 100KB] under realistic workloads.

for a long time due to more congested large flows, the low link

utilization misguides CONGA to always choose the paused

path without timely rerouting, resulting in more HoL blocking

flows and reordering packets. Although DRILL cannot sense

the remote PFC pausing, it can reroute when PFC PAUSE

frames are back pressured to the local switch. In comparison,

Proteus can make rerouting decisions rationally and timely to

adapt to different PFC pausing scenarios, the victim flows are

not blocked across different workloads.

In comparison, Proteus can make rerouting decisions ratio-

nally and timely to adapt to different PFC pausing scenarios,

the victim flows are not blocked across different workloads.

The performance improvement of Proteus is also shown in

the motivation examples in Fig. 2 (d), Fig. 3 (d) and Fig. 4

(d) in Section II-B. Specifically, the FCT of the victim flow

f1 is reduced by 39%, 21% and 34% over CONGA, Hermes

and DRILL, respectively.

Small flows: Next, we test the 99th percentile FCT slowdown

with varying flow size under 0.6 traffic load, as shown in Fig.

10. The X-axis are linear in the total number of small flows

less than 100KB, and each tick is increased by 5%.

For small flows, as shown in Fig. 10, Proteus achieves

greater performance improvement at the 99th percentile FCT

as expected, since the tail latency will be several times higher

than the ideal FCT once small flows suffering from HoL

blocking problem. For example, in Web Server workload,

Proteus achieves up to 1.7x, 2x, 3.3x, 2.8x lower 99th per-

centile FCT compared to CONGA, DRILL, Hermes and MP-

RDMA, respectively. The reason is that the rerouting signals

in the existing load balancing schemes cannot correctly or

timely sense the PFC pausing before the small flows finish

transmission, resulting in large tail FCT. Under bursty PFC

pausing, Proteus further decides whether to reroute rationally

based on the tolerable delay, which will avoid to be blocked

earlier than the other schemes. In brief, Proteus provides

more opportunities for small flows to reroute when they are

blocked by PFC PAUSE, especially for tiny flows that would

be completed in less than one RTT.

C. Proteus Deep Dive

We further inspect the effectiveness of Proteus in terms

of HoL blocking flows and reordering packets under realistic

workloads in the same large-scale simulation in Section V-B.

Then we look into the sensitivity of Proteus to different

parameter settings including RTTlow for path classification

and the number of alternative paths for rerouting.

Effectiveness of rerouting: We first observe the ratios of

HoL blocking flows and reordering packets under 60% traffic

load. Fig. 11a shows that Proteus successfully avoids HoL

blocking without victim flows under four workloads. However,

the blocking flows of CONGA, DRILL, Hermes and MP-

RDMA under Data Ming are as high as 35%, 19%, 15%, and

11%, respectively. This is because Proteus leverages multi-

level routing signals to allocate traffic, it can make rational

rerouting decisions based on the cumulative sojourn time.

Proteus can not only prune unnecessary rerouting, but also

make the better-late-than-never rerouting decisions.

We also observe that Proteus effectively avoid packet re-

ordering in Fig. 11b. The reason is that Proteus can preserve

orderly transmission both at RTT and sub-RTT level rerouting.

For CONGA, the ratios of blocked and out-of-order packets

increase as more paths with lower link utilization due to

transient PFC pausing are mistakenly selected for rerouting.

DRILL is heavily affected by PFC pausing because it makes

rerouting decision at packet granularity and can only switch

path after the local queueing buildup caused by PFC PAUSE.



(a) Ratio of blocking flows (b) Ratio of reordering packets

Fig. 11: Blocking flows and reordering packets.

(a) Sensitivity to RTTlow (b) Sensitivity to alternative paths

Fig. 12: Sensitivity to parameters.

Hermes cannot make accurate rerouting decisions only based

on the stale RTT-level congestion signals. MP-RDMA intro-

duces relatively few reordering packets since it can control the

degree of out-of-order packets.

Sensitivity of parameter settings: We next investigate how

different parameter settings affect the performance of Proteus.

Fig. 12 (a) and Fig. 12 (b) show the sensitivity analysis for

RTTlow and the number of alternative paths. First, we observe

that Proteus obtains relatively stable 99th percentile FCT

when we set these two parameters around the recommended

values. Another observation is that the tail FCT increases as

RTTlow is set to a more conservative or aggressive value.

This is because Proteus will miss some uncongested paths with

smaller RTTlow, while Proteus will choose some congested

paths with larger RTTlow. We also observed that Proteus

achieves almost good performance, although the number of

alternative paths increases from 3. The reason is that as long

as there are paths where PFC does not trigger, traffic can be

shifted to alternative paths to avoid the continuous blocking.

VI. RELATED WORK

Congestion control: In recent years, several RDMA con-

gestion control mechanisms [11], [12], [15], [19], [29]–[31],

[52]–[54] have been proposed. QCN [52] quantizes congestion

notification at link layer to control congestion for Ethernet.

DCQCN [11] relies on ECN marking to alleviate congestion

and reduce PFC triggering. TIMELY [29] and Swift [30]

leverage RTT as the congestion signal to reduce queuing delay.

MP-RDMA [15] proposes a multi-path ACK-clocking scheme

to reduce memory footprint. HPCC [31] leverages in-network

telemetry technology to detect congestion for rate adjusting.

PCN [12] only regulates the rate of identified congested flows.

TCD [14] detects congested flows for existing transports.

BFC [53] designs a per-hop per-flow control to reduce HoL

blocking. Dart [19] proposes a divide-and-specialize approach

to reduce receiver and in-network congestion. The above

efforts effectively reduce congestion, but they still cannot

avoid PFC pausing especially under bursty scenario. IRN [54]

explores loss recover scheme for RDMA without PFC.

Load balancing: To alleviate congestion by making full use of

the overwhelming multiple parallel paths, there is a large body

of load balancing schemes [21]–[26], [55]–[59] originally

designed for lossy DCNs. CONGA [21] uses global congestion

information to allocate flowlets among paths in a distributed

manner. HULA [22] balances traffic load effectively by using

link utilization to sense path congestion. DRILL [24] forwards

packets purely based on the local queue length to alleviate

micro-burst congestion. Hermes [23] leverages comprehensive

sensing to detect path status and makes timely yet cautious

rerouting to be resilient to various uncertainties. Clove [55]

makes routing decision based on end-to-end signals such as

RTT and ECN. LetFlow [26], Presto [25] and RPS [56] choose

forwarding path randomly in a congestion insensitive manner.

The paths selected by flowcell-based Presto and packet-based

RPS are prone to PFC pausing, leading to a lot of out-of-

order packets. TLB [57] adjusts the switching granularity

dynamically for elephant flows. Hedera [58] and MicroTE [59]

schedule flows by using network controller. However, these

schemes do not work well in PFC-enabled networks due to

unreliable congestion signals.

VII. CONCLUSION

This paper presented Proteus, a load balancing scheme for

PFC-enabled networks, which is an extension of the previous

workshop paper [20]. Proteus leverages RTT level signals

(i.e., RTT and link utilization) to detect path conditions and

divide paths into three categories (i.e., non-congested paths,

undetermined paths and congested paths) to guide initial path

selection. Then Proteus utilizes sub-RTT level signal (i.e., cu-

mulative sojourn time) to make rerouting decisions rationally

in a better-late-than-never way. In this way, Proteus can react

to PFC pausing timely and alleviate head-of-line blocking.

We have implemented Proteus with hardware programmable

switches and evaluated it through testbed experiments and

large-scale simulations. The test results show that Proteus

outperforms CONGA, DRILL, Hermes and MP-RDMA on

the average FCT and 99th percentile FCT by up to 35%, 31%,

28%, 22% and 46%, 42%, 34%, 29%, respectively.
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