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Abstract—Modern datacenter applications widely exhibit mul-
ticast communication patterns. Meanwhile, RDMA is emerging
as the de-facto networking architecture to meet the stringent
performance requirement of applications. However, existing mul-
ticast approaches fail to efficiently collaborate multicast with
commodity RDMA transport, either causing inefficient multicast
traffic transmission or being trapped in the insufficient end-host
transport protocol.

In this paper, we propose Cepheus, which delivers performance
gains from both multicast (i.e., traffic reduction and transmission
hop minimization) and RDMA transport (i.e., ultra-low latency,
high throughput and low CPU overhead). Cepheus reuses RoCE
as its transport layer and provides a RoCE-capable multicast
primitive via in-network assistance. At its core, Cepheus builds
on and goes beyond the native multicast architecture by exploiting
more switch functionalities to tackle the incompatibilities between
multicast flow structure and RoCE processing logic. We prototype
Cepheus on an FPGA board, as a building block attached to
an Ethernet switch. Extensive experiments demonstrate Cepheus
inter-operates with commodity RoCE protocol and outperforms
existing RDMA multicast schemes, e.g., 5.2× faster multicast
communication and 2.7× higher replication throughput for
distributed storage.

I. INTRODUCTION

Modern datacenter applications are rife with one-to-many
communication patterns that would substantially benefit from
an efficient multicast primitive due to the ability of multicast
to reduce traffic volume and minimize transmission hops.
For example, distributed storage adopts multi-replications to
ensure high availability, and thus multicast can be used to dis-
tribute replications among servers [70] and further accelerate
the upper-layer storage protocol [13], [32]. In addition, one-
to-many is a prevalent communication pattern in large super-
computing clusters and is frequently used in large-scale HPC
applications [9], [25]. Furthermore, multicast can accelerate
the parameter distribution process in distributed DNN training
architectures, such as Parameter Server (PS) and the emerging
In-Network Aggregation (INA). More use cases of multicast
can be observed in streaming telemetry [45], [54], publish-
subscribe systems [22], [34], and data-analytics platforms [39].

Despite being promising, existing multicast solutions are
struggling to keep pace with the transport-offloading trend
in datacenters. Remote Direct Memory Access (RDMA) is
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emerging as the de-facto networking technology, to meet
the increasingly stringent communication requirements from
applications, such as persistently high throughput, µs scale la-
tency, and low CPU overhead. Many tech giants have adopted
RDMA and deployed a huge number of RDMA NICs (RNICs)
into their production datacenters [21], [24], [47], [77], which
host various network-intensive applications [21], [30], [31],
[37], [63]. RDMA over Converged Ethernet (RoCE)1 is an
RDMA transport protocol that is widely adopted in Ethernet
datacenters. The reliable connection (RC)2 mode of RoCE is
mostly adopted because it supports complete transport func-
tions. However, the mismatched abstraction between multicast
flow structure and RoCE semantics prevents their effective
collaboration. As a result, existing solutions fail to achieve
performance gain from both multicast and RoCE (§II-C).

On one hand, native multicast (NMcast) (e.g., IP-based
multicast [10], [16], [61]) relies on the switch to do replication
and routing, and the sender only needs to send out one single
copy of data. Therefore, NMcast can efficiently reduce traffic
volume and minimize transmission hops. However, NMcast
cannot support advanced layer-4 protocols such as TCP and
RoCE, limiting its usage among datacenter applications. Some
solutions propose building a custom transport layer for NMcast
traffic, but this incurs significant performance, development,
and management overhead, rendering it obsolete in modern
datacenters.

On the other hand, many mainstream distributed frameworks
(e.g., MPI [52], NCCL [51] and Spark [76]) develop their
private application-layer multicast (AMcast) primitives on top
of RoCE protocol. They use multiple RoCE connections to
provide a layer-7 logical multicast interface to applications,
where the traffic is indeed delivered by invoking multiple
unicast (i.e., one-to-one) transmissions. AMcast is much more
prevalent than NMcast due to the management feasibility from
reusing RoCE. However, AMcast inevitably incurs redundant
traffic and increased transmission hops, significantly degrading
the overall communication performance [8], [16], [61].

In this work, we aim to design a high-performance multicast
primitive that achieves (i) traffic reduction and transmission

1RoCE has an extension version, RoCEv2. In this paper, we actually focus
on RoCEv2 and use RoCE for convenient notation.

2In this paper, RoCE refers to its RC mode unless otherwise specified.



hop minimization as NMcast, (ii) ultra-low latency, high
throughput, and low CPU overhead from reusing commodity
RoCE, and (iii) interoperability with commodity RNICs and
Ethernet switches for management friendliness. Our intuition
is to build on NMcast (i.e., inherit its transmission-efficient
multicast flow structure) and exploit more switch functional-
ities to deliver a RoCE-capable multicast stream that can be
directly processed by commodity RNICs.

However, delivering a RoCE-capable multicast stream is
challenging due to the mismatched abstraction between the
multicast flow structure and RoCE semantics. First, multicast
data packets are delivered in a one-to-many structure, with one
stream stepwise converting to multiple streams at replication
switches. This violates the one-to-one connection semantics
of RoCE. Second, RoCE requires feedback from receivers to
perform reliability guarantee, retransmission, and congestion
control (CC). However, the feedback processing logic of
RoCE is designed for a single feedback stream, and multiple
feedback streams in multicast can confuse it and degrade the
overall performance.

We propose Cepheus, a high-performance RDMA multicast
primitive for datacenter applications (§III). (1) Cepheus reuses
RoCE as its transport protocol and enables the multicast
member to maintain only one RoCE connection. (2) Cepheus
designs an on-switch accelerator to provide a RoCE-capable
multicast primitive by effectively addressing the above chal-
lenges through: (i) preserving connection states in the network
and bridging a one-to-many connection for multiple receivers;
(ii) tailoring feedback in the network, enabling the sender
to receive a compatible unicast-like feedback stream. (3) To
enhance scalability, Cepheus manages feedback states in a
hierarchical manner, bounding the switch memory overhead
per multicast group, and supports efficient multicast source
switching, significantly reducing the number of groups main-
tained on the switch.

We implement the Cepheus accelerator on an FPGA board
and attach it as a building block to an Ethernet switch (§IV).
Cepheus is evaluated through extensive testbed experiments
and simulations (§V). Our results demonstrate that Cepheus
interoperates seamlessly with commodity RoCE protocol and
outperforms prior RDMA multicast schemes [2], [52], e.g.,
5.2× lower multicast communication time, 2.7× higher repli-
cation writing throughput, and 12% lower completion time of
HPC application. Furthermore, Cepheus maintains consistent
performance in large-scale multicasts, exhibits satisfactory
goodput under packet loss, and achieves fairness against
unicast flows.

In summary, our key contributions are as follows:

• We designed Cepheus, a high-performance multicast proto-
col that leverages the benefits of both multicast and RoCE.
Cepheus supports a RoCE-capable multicast primitive that
reuses existing RoCE functions.

• We enhance the scalability of Cepheus through hierarchical
feedback states management and efficient multicast source
switching.

• We have implemented a Cepheus prototype and conducted
experiments to demonstrate its interoperability with RoCE
and its performance superiority in multicast communication.

II. BACKGROUND AND MOTIVATION

We first exemplify the multicast pattern and summarize its
requirements (§II-A), then introduce the basic concepts of
RDMA network (§II-B), and finally reveal the insufficiencies
of existing multicast solutions (§II-C).

A. Multicast Pattern and Requirements

As mentioned in §I, multicast is common in many ap-
plications, particularly in HPC, storage and DNN training.
First, multicast is an essential element in supercomputers’ total
traffic. For instance, in a large IBM BG/Q supercomputing
system (786,432-core) [9], multicast is the top-2 communi-
cation pattern, accounting for approximately 14% of total
traffic (only less than allreduce (19%)). Moreover, multicast is
common in HPC applications; for example, high-performance
linpack (HPL) benchmark [25] is widely used to rank the
supercomputer’s computing capacity [68], and most of its
communication traffic exhibits multicast pattern. Second, dis-
tributed storage offers high availability and durability using
multiple (usually 3∼7) replications stored in different nodes
to prevent data loss [21]. Previous works show that replication
delivery significantly impacts the application’s quality of ser-
vice (QoS) [46]. Third, data parallelism is necessary for DNN
training with a large dataset, such as Large Language Model
(LLM) training [60]. In the PS architecture (one of the data-
parallel approaches) [38], the aggregated gradients should be
distributed from PS(s) to multiple workers. There is a similar
distribution of gradients in the INA architecture [35].
Requirements. The datacenter supports mixed traffic from
different applications, including both large objects and small
query messages, using multicast primitives. We aim to develop
a general multicast mechanism that offers high throughput and
low latency without being limited to specific applications.

B. RDMA Overview

RoCE is an RDMA transport protocol that is implemented
on RNICs and has been widely adopted by various tech giants
at a large scale [21], [24], [47], [77]. RoCE offloads transport
layer functions onto hardware to achieve high throughput and
low latency with near-zero CPU overhead.
RoCE Transport Mode. Among the supported transport
modes in RoCE, RC has various advantages. First, RC sup-
ports all RDMA operations, especially the zero-CPU-involved
one-sided memory operations. Second, RC provides complete
transport functions, e.g., (de)packetization, connection man-
agement, reliability guarantee, retransmission, and CC, to fully
unleash the RNIC offloading capacity, thus achieving the best
performance. As a result, RC mode is mostly adopted in
today’s datacenter applications [17], [49], [74].
Non-programmability and SmartNIC. Currently, the com-
plete RoCE transport functions are statically built-in with
specialized circuits in RNICs, thus non-programmable, and
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Fig. 1: Existing multicast solutions and the comparision between Cepheus and them.

the non-requirement to modify RNIC is an important goal in
various works [44], [49], [55]. In terms of SmartNICs, many
popular SmartNICs provide programmability via on-NIC CPU
cores and adopt the same RoCE specifications as the built-in
transport protocol; thus, they only provide programmability
on top of the transport layer while the transport layer remains
non-programmable [3]. The FPGA-based SmartNICs provide
full programmability, including the transport layer. However,
building a custom transport layer for specific traffic incurs
significant development overhead, as detailed later.

C. Insufficiencies of Existing Multicast Solutions

Existing multicast solutions cannot simultaneously achieve
performance gain from multicast and RoCE protocol.
Native Multicast (NMcast). With NMcast, the sender only
needs to send out one single copy of data, while the network
replicates data at proper switches and eventually forwards
the data to multiple receivers, as illustrated in Fig. 1a. This
process follows a multicast distribution tree (MDT), where the
replication is made as late as possible to reduce traffic volume.
We compare different schemes under a 1-to-4 multicast (S →
{R1, R2, R3, R4}), shown in Fig. 1d. NMcast achieves the
minimum number of hops, full bandwidth bottleneck release,
and only goes through end-host processing stacks once.

However, due to the mismatched abstraction of NMcast
data flow and transport’s one-to-one connection semantics,
NMcast cannot support standard layer-4 protocols such as
TCP/RoCE [10], [16], [61], causing limited usage among
applications. On the other hand, building a custom NMcast
transport results in significant overhead. First, one approach is
to build NMcast transport at software (as the existing RoCE
is non-programmable), which foregoes the performant capa-
bility of hardware offloading. Second, FPGA-based SmartNIC
enables the operators to build a hardware NMcast transport;
however, this is less promising because the operators have to
rebuild all the basic transport functions (some may already be
baked-in in RoCE), causing non-trivial development overhead.
In addition, the co-existence of different transports may cause
unexpected behavior (e.g., unfair contention), making network
management harder. As a result, custom NMcast transport is
less promising in modern datacenters.
Application-layer Multicast (AMcast). AMcast develops
a logical multicast interface using multiple one-to-one con-
nections. AMcast reuses commodity RoCE as transport but
inevitably incurs network overhead. The most straightforward

AMcast method is for the sender to establish multiple con-
nections with multiple receivers and independently transmit
identical data. However, this causes a severe bandwidth bottle-
neck on the sender’s outbound link [8]. Therefore, the overlay
multicast approach that leverages a pipelined transmission
strategy is more preferred [23], [51], [52], [76]. However, we
show that it is challenging to achieve both high throughput
and low latency with a single overlay multicast. We introduce
two popular schemes below: Binomial Tree (BT) and Chain.

The BT approach takes a tree-like distribution method,
which is recursive for a total of O(log2N) steps (assuming
a 1-to-N multicast), as shown in Fig. 1b. BT is good for short
messages (i.e., latency-friendly) because it has a logarithmic
latency form, but its bandwidth utilization falls far behind
the optimal level, resulting in poor performance with large
messages. The Chain approach forms nodes in a logical chain,
and the intermediate nodes relay data to the next node after
receiving data from the last node, as shown in Fig. 1c. Chain
is throughput-friendly because it fully releases the tension on
every node’s link. However, Chain has a longer latency, which
is linear to the number of nodes. We analyze BT and Chain
in Fig. 1d. It is worth noting that messages in both BT and
Chain go through the end-host stacks multiple times at every
node, which affects latency too.

D. Goal, Challenge and Intuition

Our goal is to build on NMcast and exploit more proper
in-network cooperations to provide a RoCE-capable multicast
stream, which can achieve performance gains from both mul-
ticast and commodity RoCE. However, providing a RoCE-
capable multicast stream is challenging.
C1: Connection semantics mismatch. Commodity RDMA
relies on the destination Queue Pair (dstQP) field in the IB
BTH header to correlate incoming packets to local connec-
tions [65]. This logic is designed for one-to-one connection
and does not match the multicast data delivery pattern. This
is because each receiver has a different QP Number (QPN),
while the default NMcast replicates the entire packet [10],
[28], resulting in all packets containing an identical dstQP
that matches at most one receiver’s connection.
Intuition: We can preserve necessary connection states in
the network, follow the NMcast-like MDT for replication and
forwarding, and bridge the sender connection to multiple re-
ceiver connections by modifying the replicated packet headers



In-network  
connection  

bridging 

Aggregating two ACK 
streams to one stream

S R1 R2 R3

L2

S1

C2

{R1,R2,R3}

{R2, R3}

{R1}

FPGA 
Accelerator

Ethernet 
Switch

Network

L1

{R1,R2,R3}

(b) Data Replication and Connection Bridging

{R1}

ack

A

B

C

D

C2

S1 S3

L1 L2 L3 L4

S R1 R2 R3

C2

S1 S3

L1 L2 L3 L4

S R1 R2 R3

(a) MFT Registration (c) Many-to-one ACK Aggregation

Fig. 2: Cepheus architecture and workflow. We take a three-layer fat-tree topology as an example. The sender S, three receivers
(R1 - R3), and colored switches form an MDT. In (c), we take ACK as an example of feedback.

at the leaf switches. This enables the multicast data flow to
transparently align with RoCE connection semantics.
C2: Issues with feedback interpretation. The feedback
processing logic of RoCE [65] is designed to handle a single
feedback stream from a single receiver. Thus, multiple feed-
back streams from multiple receivers can cause unexpected
issues such as ACK and NACK inter-covering, and CNP
magnification. These issues can lead to disturbance in RoCE’s
loss detection, retransmission, and rate-controlling routines.
Intuition: Our goal is to reliably deliver data packets to
all receivers. So, we can aggregate ACK and NACK in the
network to deliver a unicast-like stream that represents the
overall loss condition among the group. Additionally, we can
filter CNP3 in the network to only reveal the most congested
path to the sender. By doing so, we can proceed with the
end-host reliability and CC routines correctly.

III. CEPHEUS

We first introduce the architecture and workflow of Cepheus
(§III-A), and then we describe its multicast forwarding table
(MFT) structure and connection bridging (§III-B), MFT reg-
istration (§III-C), RoCE-capable feedback handling (§III-D),
and efficient multicast source switching (§III-E).

A. Architecture and Workflow

Fig. 2 depicts the architecture and workflow of Cepheus,
which comprises three main phases: MFT registration, in-
network data replication and connection bridging, and in-
network feedback handling. Every switch in the multicast
distribution tree (MDT) has its local MFT. All in-network
processing functions are implemented in an FPGA board, as
a building block attached to an Ethernet switch.
Hosts Establishing Connections. Each multicast task sets
up a multicast group (MG) and is assigned a unique 32-bit
McstID. The hosts in the MG follow the existing unicast-
like procedure to establish one RoCE connection for this
MG, where QP is used as the connection endpoint. A remote
connection, identified by a <dstIP, dstQP> tuple, is required

3Modern RNICs commonly incorporate DCQCN [77] as the built-in CC
mechanism, which uses CNP as the congestion signal. Therefore, in this paper,
we consider CNP as the primary congestion signal.

to activate the newly established QP. Cepheus assigns a virtual
remote connection, i.e., no corresponding physical QP, to
all established QPs: the dstIP and dstQP is set as McstID
and a reserved value of 0x1, respectively. Commodity RNICs
provide the API to specify the dstIP and dstQP without
modifying the RNIC circuit [43].
MFT Registration. After connection establishment, Cepheus
registers the MFT to switches to form an MDT. The MFT
registration is performed in the control-plane (i.e., out-of-
band), which comprises a controller and several lightweight
agents on switches and hosts. The host that maintains the
controller is referred to as the leader host4. The controller
collects the IP and QPN states of other hosts (except the leader
host) in the MG ( 1 ), fits these states into the packet format of a
self-defined MFT Registration Protocol (MRP), and transmits
them to switches for building MFT and to other hosts for
affirming their multicast membership ( 2 ). The involved hosts
confirm their participation by answering confirmations to the
controller ( D ).
Data Replication and Connection Bridging. The multicast
sender (i.e., the source) transmits data through the performant
RoCE protocol. Then, each switch in the MDT follows its local
MFT to replicate ( 3 ) and forward data to multiple receivers
eventually. Whether a switch port is part of the MDT and
on which switches the MDT needs branching are determined
during the MFT registration. The leaf switches are responsible
for modifying the BTH header to bridge connections for
different receivers ( 4 ). For instance, as shown in Fig. 2b,
S transmits data only once; L1 and C2 are involved in the
MDT but do not replicate, S1 and S3 replicate data packets
to multiple downstream paths, and the leaf switches, L2,3,4,
bridge connections for R1,2,3.
Feedback Handling. After receiving data packets, receivers
generate normal ACK/NACK/CNP packets following the stan-
dard RoCE logic. The feedback packets traverse the MDT
inversely, and the switches aggregate ACK/NACK and filter
CNP when there are multiple input feedback streams ( 5 ),
eventually forwarding a single RoCE-capable feedback stream

4For ease of understanding, readers may perceive the leader host as the
multicast source. In fact, the leader host can be any host in the MG.
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to the sender. The leaf switch connected to the sender modifies
the packet header before forwarding the final feedback ( 6 ). As
shown in Fig. 2c (ACK as the example), L2, L3, L4, and C2

only forward ACK to next-hop switches, as there is only one
ACK stream as input. S3 and S1 perform ACK aggregation
since there are multiple input ACK streams.

B. MFT Structure and Connection Bridging

The Cepheus MFT guides the overall in-network processing
logic, including the MDT routing paths, data replication and
feedback handling. To ease the presentation, we first introduce
the MFT structure and its correlated connection bridging,
followed by the MFT registration process in §III-C.

1) MFT Structure: Fig. 3 illustrates the MFT structure in
Cepheus, which comprises two components: (i) Path Index
and (ii) Path Table. Cepheus maintains one MFT for each
MG and many MGs can co-exist. The MFT of an MG is
indexed by MG’s McstID, which is assigned as the dstIP of
all connections in this MG. Therefore, the data packets’ dstIP
can be used to index its corresponding MFT.
Path Index. This is an array that identifies whether a port is
involved in the MDT. If the value in the ith position is zero,
Porti is not involved in MDT; otherwise, its non-zero value
indicates the Porti’s entry index in the Path Table. The size of
the Path Index is n (# of switch physical port), which means
the number of entries in the Path Table is at most n.
Path Table. Each entry of the Path Table represents an
outgoing path. There are two types of paths with the next-hop
device as a host and a switch, respectively. If the next hop
is a host, Cepheus maintains dstIP and dstQP in this entry;
otherwise, the two values are marked as invalid. Note that all
entries, regardless of whether the next-hop is a host, maintain
an AckPSN that records the largest Packet Sequence Number
(PSN) of received ACKs from this path (explained later).

2) Data Replication and Connection Bridging: The switch
uses its local MFT to route and replicate data along the MDT.
The switch indexes the associated MFT using data packet’s
dstIP. Then, the switch utilizes the Path Index to iterate all
entries in the Path Table. If there is more than one entry,
the switch needs to replicate the data. For each entry, if its
next hop is a switch, the switch just forwards the replication
through this entry’s port; if its next hop is a host, the switch
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Fig. 4: Connection bridging in S1-L2-R1 path.

first bridges the host’s connection by modifying connection-
related fields and then forwards the replication.

We take the S1-L2-R1 path in Fig. 2b as an example and
illustrate the connection bridging process at leaf switch L2 in
Fig. 4. Firstly, the dstIP and dstQP are changed from McstID
and 0x1 to R1’s IP and QPN to match R1’s QP identification.
Additionally, Cepheus changes the srcIP from the sender’s
IP to McstID. As a result, when R1 generates feedback, the
feedback’s dstIP will be the data packet’s srcIP, i.e., McstID.
Thus, feedback packets can also index the associated MFT by
their dstIP.
One-sided RDMA WRITE. The WRITE operation allows a
host to write to a memory slot on a remote host without involv-
ing the CPU. The remote Memory Region (MR) information,
e.g., remote Virtual Address (VA) and Remote Key (RKey),
is indicated in the first packet of the WRITE request. The
WRITE responder’s RNIC checks whether the WRITE request
matches its local MR and only executes the request when
they match. Since the MR information is generally different
on different receivers, Cepheus stores MR information in the
MFT and modifies the WRITE request header for different
receivers, enabling multicast WRITE. We introduce an extra
progress to inform the switch about the MR information of
different receivers.

C. MFT Registration

As mentioned in §III-A, Cepheus develops a custom MFT
Registration Protocol (MRP) to register MFT. MRP is a UDP-
based protocol and consists of four main steps.

First, the controller in the leader host gathers the connection
information of all receivers in the MG through an out-of-band
protocol (e.g., TCP) ( 1 ). The information is then encapsulated
into the MRP packet layout and sent to the leader host’s leaf
switch ( 2 ). The packet layout is illustrated in Fig. 5. Cepheus
sets the MRP packet’s dstIP as McstID and assigns it a specific
UDP port for MRP packet classification. The packet’s payload
includes the metadata and detailed connection information of
the receivers, such as their IP and QPN. Due to the MTU
limitation (usually 1500 Bytes), each MRP packet can only
contain information from a maximum of 183 nodes. There-
fore, if an MG has more than 183 members, the connection
information must be spread across multiple MRP packets. The
seq and total fields indicate the sequence number and the total
number of MRP packets, respectively.

Second, upon receiving the MRP packet, each switch builds
its local MFT and forms a part of MDT. An MRP packet
(p) carries a McstID and connection information of multiple
receivers (p.nodes). For each node in p.nodes, the switch finds
its multicast routing port through the unicast forwarding table.
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Each time a routing port is determined, its Path Index value
is marked, and its corresponding Path Table entry is filled.

For each node n in p.nodes: (1) If n is not directly
connected, the switch finds the set of its routing ports/paths
(Setn). Then, if one port in Setn has already been involved
in the MDT (i.e., its Path Index value is non-zero), the switch
reuses it as n’s routing port to delay replication and saves
bandwidth. Otherwise, the switch selects the port with the
lowest utilization (i.e., least used by MGs) to perform load
balancing at the group level. (2) If n is directly connected,
the connected port is n’s routing port and the switch fills n’s
connection information found in the MRP packet into its Path
Table entry. We show an example in Fig. 2a, where at L1,
three nodes share an outgoing path to avoid replication ( A );
at S1, R2 and R3 share a path while R1 must go on a separate
path, so S1 makes replication ( B ); at L2, as R1 is directly
connected to it, L2 records R2’s connection information in
L2’s local MFT ( C ).

Third, after building the local MFT, the switch generates
one or more new MRP packets to downstream devices for
building their local MFTs. Each new MRP packet through
a port only contains connection information of the receivers
that are routed through that port. For example, S1 sends the
MRP packet that contains {R2, R3} and {R1} to C2 and L2,
respectively ( B ). The MRP packets are forwarded hop-by-hop
and eventually arrive at the receivers.

Finally, if a receiver receives the MRP packet that contains
its IP address, this receiver will send a confirmation (ACK)
to the controller, confirming its participation ( D ). After the
controller collects all confirmations, the MFT registration is
finished and data-plane multicast transmission can start.

D. RoCE-capable Feedback Handling

In this work, we primarily focus on three types of feedback:
ACK, NACK, and CNP. Our goal for feedback handling is
to provide a RoCE-capable feedback stream that accurately
guides the loss detection, retransmission, and rate control at
the sender. Our key principles of feedback handling are:
• The sender only receives an ACK with AckPSN when all

receivers have received all packets with PSN ≤ AckPSN ,
matching RoCE’s ACK coalescing scheme.

• The sender only receives a NACK with ePSN when all
receivers have received all packets with PSN < ePSN ,
preventing the NACK inter-covering issue.

• Multi-stream CNPs should be filtered to enable the sending
rate to match the most congested receiver.

ACK Aggregation. The ACK-related states in the MFT
(Fig. 3) include (i) the group-level states, including the largest

PSN of aggregated ACK from this switch (AggAckPSN), and
the port from which the aggregated ACK should be sent
(AckOutPort); (ii) the port-level states, including the largest
PSN of ACK received from each port/path (AckPSN).

Upon receiving an ACK from a path of MDT, the switch
firstly updates this port’s AckPSN if the PSN of the incoming
ACK is larger than the currently recorded one5. Then, Cepheus
checks whether the Trigger Condition is satisfied; if yes,
Cepheus will generate an aggregated ACK, send it out through
AckOutPort, and update the AggAckPSN. The aggregated
ACK’s PSN is the minimum AckPSN for all ports, which
is found by iterating through all MFT entries. As a result,
every time the sender receives an aggregated ACK containing
a PSN, the sender can confirm that all receivers have received
all packets before this PSN.

Trigger Condition. Once generating an aggregated ACK,
Cepheus records the port that owns the minimum AckPSN as
triPort. Then, each time the triPort receives an ACK with a
larger PSN than AggAckPSN, the aggregated ACK generation
is triggered. Because of this Trigger Condition, not every ACK
packet will trigger the aggregated ACK generation, so the
number of ACKs received by the sender is reduced, mitigating
the well-known ACK exploding issue [57].
Filtering Retransmitted Packets. The retransmitted packets
also follow the MDT to be routed and replicated, similar
to normal data packets. In addition, when receiving a re-
transmitted packet, for each Porti in MFT, Cepheus checks
if this packet’s PSN is greater than AckPSN of Porti; if
yes, Cepheus forward this packet through Porti, otherwise
not. This filtering mechanism saves bandwidth and prevents
receivers from receiving duplicate retransmitted packets.
NACK Aggregation. When receiving an out-of-order packet,
the receiver will generate a NACK packet to notify the multi-
cast sender. Cepheus follows standard RoCE rules, and thus,
the NACK contains the receiver’s expected PSN (ePSN), and
each NACK acknowledges all packets with PSN < ePSN .
This rule must be carefully handled to prevent the NACK inter-
covering issue. For instance, assuming there are two receivers:
R1 loses p1 and R2 loses p2 (p1.PSN < p2.PSN ). Cepheus
must guarantee that p1’s NACK is forwarded to the sender
first; otherwise, p2’s NACK will cover the loss of p1, and the
sender won’t retransmit p1 anymore.

Cepheus switch only forwards a NACK with ePSN when all
receivers have acknowledged all packets with PSN < ePSN .
Cepheus records the minimum ePSN in a group-level state
MePSN, and updates it when receiving a NACK. When
Cepheus generates an aggregated ACK, Cepheus checks if the
minimum AckPSN for all ports equals MePSN − 1; if yes,
Cepheus generates a NACK packet with ePSN as MePSN and
sends it out through AckOutPort. By this checking, Cepheus
makes sure that the NACK packet would not cover any
preceding loss. Once a NACK is generated, MePSN is marked
as invalid (discard previous history) and any incoming NACK

5Note that the received ACK can be an aggregated ACK from the connected
switch or the original ACK from the connected host. Cepheus does not
differentiate this when aggregating ACK.



could update it. Note that if there are not enough NACKs to
trigger retransmission, the safeguard timeout at the end host
will work to ensure reliability.
Bounded Memory Overhead Per Group. The most naive
approach to managing ACK/NACK states is to track the per-
receiver states on each passing switch or only on leaf switches.
However, this approach has severe scalability issues as the
state tracking overhead will linearly increase with the MG size.
By contrast, as described above, each switch in Cepheus tracks
only one NACK state and adopts a per-path tracking manner
for ACK states. ACK states are aggregated layer-by-layer in
Cepheus to form a hierarchical ACK tracking structure.

For instance, the table in S1 (Fig. 2c) does not contain
separate entries for R1, R2, and R3 but only has two entries
for paths to L2 and C2. The entry for the C2 path contains
the aggregated ACK states of R2 and R3. As a result, the
AckPSN of C2 path represents the minimum AckPSN of R2

and R3. Therefore, the Path Table size on a switch is fixed to
at most n entries (# of switch ports), regardless of the size of
the MG. We calculate that 1K MGs at most cost 0.69MB of
memory per switch (assuming 64 ports per switch), which is
considered acceptable.
Congestion Control. We reuse the built-in DCQCN [77]
mechanism in commodity RNICs to regulate the multicast
sending rate. We adopt the single-rate scheme for multicast
CC, matching the source sending rate with the most congested
path in the MDT6. To this end, we enhance the switch with
a CNP filtering mechanism while remaining the end-host
DCQCN unchanged. Specifically, we maintain a congestion
counter for each link at the switch, recording the congestion
degree (i.e., number of CNPs during a given time window)
from the receivers or downstream switches. We then perform
signal filtering to only pass through the CNPs from the most
congested link (forming a path when cascading each switch
link end-to-end). Further, a periodic aging mechanism is added
to update the congestion counter to match the frequently
changing network dynamics. Note that there are different
implementations of congestion signals (e.g., [12] reuses ACK
to carry the congestion bits) and our CNP filtering mechanism
works for them all with little modifications. We omit some
technical details here.
Flow Control. We employ the native PFC [1] scheme without
any modifications in our setup. The PFC operates in the fol-
lowing manner within Cepheus: Assuming a switch supports a
multicast group (one ingress port to n egress ports), when an
egress port receives a PAUSE frame, it is suspended. Thus, the
corresponding ingress port halts replication among this group.
Subsequently, the ingress port’s queue grows and will send a
PAUSE frame to its upstream entity if necessary. This working
logic aligns with the design principle of Cepheus CC, where

6There are single-rate and multi-rate schemes historically. Single-rate
scheme [57], [75] is simpler at end-host as it only needs to maintain one
sending stream with a rate matching the most congested receiver. Multi-rate
scheme [41] maintains multiple sending streams with different rates at end-
host to better adapt to receivers with different congestion degrees. However,
the cost is bandwidth inefficiency because multiple streams are forwarded
independently to corresponding receivers in the network.
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Fig. 6: Multicast source switching from A to B.

the multicast rate is controlled by the most congested path of
receivers. In the flow control scenario, the on/off status of the
multicast source is likewise controlled by the most congested
path of receivers.

E. Multicast Source Switching

Multicast source switching inside an MG is common in
datacenter applications. For example, in HPL [25], several
nodes form an MG first and different nodes play as the
multicast source in different epochs. To support this, the naive
approach is to establish multiple MGs each with an inde-
pendent MFT registered on switch. However, this approach
would significantly increase the number of MFT on the switch,
degrading scalability. By contrast, Cepheus efficiently supports
the inside-MG multicast source switching with only one
MFT and without reestablishing end-host QPs, significantly
reducing the number of groups maintained on the switch.

In terms of the switch, when the source of an MG changes,
the switches can detect this by recognizing the change of the
incoming port of multicast data packets, which is recorded for
later feedback forwarding. There are no other modifications to
Cepheus’ in-network logic.

For the end-host, we enhance a PSN Synchronization pro-
cedure to synchronize old and new source nodes’ states. Note
that each RoCE QP maintains two PSN records. The Send
Queue PSN (sqPSN) is used to record the output packets,
and the Receive Queue PSN (rqPSN) is used to verify the
input packets. The sender’ sqPSN should equal the receiver’s
rqPSN at the beginning of the transmission in a connection.
For example, as shown in Fig. 6, node A has multicasted
100 packets to nodes B, C, and D. Assuming that all nodes’
sqPSN and rqPSN start from 0, the sqPSN of A and rqPSNs
of B, C, D become 100 when the transmission ends. When
the multicast source switches to B, if B starts transmission
immediately, the PSN of outgoing packets would be B’s
current sqPSN, i.e., 0. These packets would be dropped by
C and D as their rqPSNs are already 100. Therefore, the PSN
Synchronization procedure is used to maintain the consistency
between sqPSN and rqPSN when the multicast source changes.
In particular, the old source node assigns its rqPSN as its
sqPSN, and the new source node assigns its sqPSN as its
rqPSN. This problem can also be addressed by using Dynamic
Connected Transport (DCT) [18], which synchronizes the PSN
of the sender and the receiver with the DC Connect packet.
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Fig. 7: Cepheus testbed consists of a commodity switch, an FPGA board, and four servers. The FPGA board implements four
processing pipelines, each capable of line-rate traffic processing for a 100Gbps Ethernet interface.

IV. IMPLEMENTATION AND TESTBED

The testbed implementation comprises (i) an FPGA multi-
cast accelerator, (ii) a commodity non-programmable Ethernet
switch, and (iii) a set of software APIs exposed to applications
at the end-host. Additionally, we discuss our rationale for
selecting FPGA over a P4 programmable switch.
FPGA Accelerator. We have implemented all in-network
functions, including MFT registration, data packet duplication,
header modification, and feedback handling logic, on an FPGA
board equipped with an FPGA chip [71] and four 100Gbps
Ethernet interfaces. The FPGA board implements four process-
ing pipelines and the implementation consumes only a small
portion of FPGA resources, shown in Fig. 7b (note that the
MFT is maintained in BRAM).

The FPGA board functions as a multicast accelerator, inte-
grated as an external building block connected to the Ethernet
switch; both sides spare four ports to connect. This multicast
accelerator is fully compatible with legacy Ethernet switches,
which are configured with Access Control List (ACL) rules to
direct multicast traffic towards the FPGA board.

The processing pipeline of the FPGA accelerator is shown
in Fig. 7a. Upon packet arrival, the FPGA board uses specific
header fields to identify the multicast data (ACK)7 in the
Parser and Arbiter. Subsequently, the data (ACK) packets are
duplicated (aggregated) by the Duplicator (ACK Aggregator),
guided by the MFT. The duplicated or aggregated packets are
then pushed in the Queue System, where we can perform
physical-queue-level isolation. Then, queues await for the
Multiplexer to schedule in case of queue competition. Finally,
the processed data (ACK) packets are transmitted back to the
commodity switch and forwarded based on their destination
IP. During processing, the MFT is accessed as needed through
internal control flows.
End-host APIs. We integrate Cepheus to MPI. Specifi-
cally, we add a new MPI-Bcast implementation in OpenMPI
(v4.1.1) [52] and modify UCX (v1.11.2) [69] for RoCE QP
creation, virtual destination assignment, and MFT registration.
When the new MPI-Bcast is called, the MPI process calls
UCX to establish RoCE QPs and register MFT to switches.
When transmitting data, UCX invokes verbs [42] API to

7In Fig. 7a, we use ACK to represent all types of feedback.

initialize RDMA operations. These software modifications are
transparent to upper-layer applications and do not require any
RNIC or RDMA driver modification.

Testbed Setting. We connect four commodity Dell servers
to the Ethernet switch, forming a small-scale testbed, as illus-
trated in Fig. 7a. Each server is equipped with a ConnectX-5
RNIC with a 100Gbps interface.

Discussion on ASIC Implementation. Although we im-
plement the Cepheus prototype with an FPGA accelerator
external to the switch, it is better to integrate Cepheus into the
switch chip to avoid occupying switch ports. Discussions with
switch chip experts led to the conclusion that the integration
is feasible, with minimal additional complexity and acceptable
area cost. Specifically, We intend to process data packets
(including packet replication and header modification) in an
inline approach. For these data packet related operations, we
can leverage the native IP multicast functionalities, which are
already standardized in Ethernet switches, thus introducing
negligible overhead. For feedback handling, as its throughput
and latency demand is low, we plan to implement it in a
dedicated Network Processor (NP) [11], serving as a small
module mounted into the general switch processing pipeline
(i.e., a look-aside approach), to reduce area and power costs.
The resource usage in Fig. 7b suggests the extra ASIC
overhead should be minimal even if the feedback handling
is implemented in an inline approach.

Discussion on P4 Programmable Switch. We opted for
FPGA over P4 programmable switch options (e.g., Tofino [19])
for two reasons. Firstly, achieving compatibility with legacy
Ethernet switches is one of our primary objectives, given
the presence of numerous already-deployed Ethernet switches
in datacenters. And we have the plan to integrate Cepheus
into switch ASIC; the FPGA implementation serves as a
preliminary validation step. Secondly, some functionalities of
Cepheus are challenging to implement on P4 programmable
switches. For example, the ACK aggregation requires the
switch to traverse a table and find the minimal PSN, and
the data replication requires the switch to recalculate the
ICRC after header modification, both of which are difficult
to implement on a P4 programmable switch. Note that we do
not assert FPGA as the best choice in all scenarios.
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Fig. 8: [Testbed] MPI-Bcast JCT of small messages.
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Fig. 9: [Testbed] MPI-Bcast JCT of large messages.

V. EVALUATION

We evaluate Cepheus through extensive testbed experiments
and simulations. The testbed configuration is detailed in §IV.
For the testbed experiments, we first examine Cepheus using
micro benchmarks (§V-A); then we deploy Cepheus in two
realistic applications to demonstrate its end-to-end improve-
ment (§V-B). The simulations (§V-C) first evaluate Cepheus
in the large-scale multicast, followed by an examination under
various packet loss rates. Finally, the performance of Cepheus
CC is evaluated. The key results are:
• Cepheus significantly accelerates multicast communication

for both small and large messages compared to BT, Chain,
and RDMC [2].

• Cepheus enhances the overall application performance, im-
proving the replication distribution throughput in a storage
system by 2.7× and accelerating the end-to-end HPL [25]
completion by up to 1.12×.

• Cepheus achieves consistent performance in large-scale mul-
ticast, maintains good throughput under realistic packet loss
rate, ensures fair sharing with unicast flow, and its CC can
adapt to changing congestion bottlenecks.

A. Micro Benchmark

We integrate Cepheus into OpenMPI [52] and UCX [69]
and provide a new MPI-Bcast implementation. Our testbed
comprises four servers; one acts as the MPI-Bcast source,
while the other three serve as receivers, forming an MG of
size 4. We compare Cepheus with two OpenMPI AMcast
algorithms8, BT and Chain, which are oriented for small and
large messages, respectively [67]. We also compare Cepheus
with RDMC. We use the MPI-Bcast job completion time
(JCT) as the metric and calculate Cepheus’ acceleration ratio.
We measure various message sizes from 64B to 512MB.

8The implementations of BT and Chain in NCCL [51] and Spark [76] are
similar in OpenMPI.
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Scheme 1-unicast 3-unicasts Cepheus
8KB IOPS(M) 1.188 0.413 1.167

TABLE I: [Testbed] Replication writing throughput in IOPS.

Lower Latency. As shown in Fig. 8, Cepheus achieves
about 3∼5.2× and 2.5∼3.5× lower latency for small mes-
sages compared to Chain and BT, respectively. Chain gets
the worst latency for small messages because its chain-like
distribution manner causes a long transmission distance (linear
to the MG size), which impacts small messages significantly.
BT is regarded as latency-friendly because it adopts a tree-
like distribution with a logarithmic latency form (O(log2N)).
However, it still falls behind Cepheus. This is because Cepheus
adopts an NMcast-like MDT to transmit data, thus achieving
the minimized transmission distance and the lowest latency.
Higher Throughput. As shown in Fig. 9, Cepheus demon-
strates a throughput improvement of 1.3∼2.8× and 2∼2.8×
compared to Chain and BT, respectively. Chain is throughput-
friendly and performs better with large messages than BT,
but still falls behind Cepheus. Note that Chain could achieve
optimal throughput with large messages only when using an
infinitely-small slice size. In practice, it is not feasible to slice
data into extremely small portions because each intermediate
host must process every slice [53], resulting in substantial CPU
overhead. Thus, in this experiment, we set the number of slices
to four, which is equal to the number of hosts, a common
configuration in real-world use cases. With this configuration,
Cepheus achieves the highest throughput for large massages
resulting from its efficient bandwidth utilization without rely-
ing on impractical assumptions.
Comparision to RDMC. RDMC [2] proposes an AMcast
algorithm, which is designed specifically for large messages.
In our evaluation, we compare Cepheus with RDMC using a
large 256MB multicast communication. The results show that
Cepheus achieves a significant JCT of 24.4ms, while RDMC
achieves approximately 35ms. This is because, despite the
fact that RDMC incorporates specific optimizations for large
messages, RDMC continues to rely on multiple unicast trans-
missions to convey data, which inevitably leads to redundant
traffic and affects its overall throughput.

B. Realistic Applications

We deploy two realistic applications with multicast patterns
and evaluate their performance with and without Cepheus.

1) Storage Data Replication: We integrate Cepheus into
our proprietary distributed storage system to assess the per-
formance of storage data replication. For our testbed, we
designated one node as the client, while the other three nodes
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Fig. 11: [Testbed] HPL JCT. "Others" includes the PF phase
and other computation processes.

served as storage servers, enabling a three-replica writing
process. We compare Cepheus with the default 3-unicasts
writing approach, where the client maintains independent
RoCE connections with three servers. Additionally, the one-
to-one (1-unicast) writing is measured as a baseline reference.
The RDMA WRITE operation is used in all solutions.

Writing Throughput. We set the IO size as 8KB and let the
client keep writing data to storage servers. We measure the av-
erage IOPS achieved by the client. As Table I shows, Cepheus
achieves nearly optimal writing IOPS (1.167M IOPS), com-
parable to the ideal 1-unicast (1.188M). The 3-unicasts only
achieve 0.413M IOPS (only 35% of Cepheus). Correspond-
ingly, the application goodput with Cepheus achieves 76.5
Gbps (1.1M×8KB), while 3-unicasts only reach 26.24 Gbps.
The advantage of Cepheus results from its efficient bandwidth
utilization. Cepheus almost eliminates the overhead brought by
multi-copies, achieving comparable performance to one-to-one
writing. Note that the throughput bottleneck of consistent 8KB
writing lies in the storage protocol stack at end-host, therefore
both Cepheus and the one-to-one writing baseline cannot reach
> 90Gbps throughput.

Single IO Latency. We measure the single IO latency over
different IO sizes, shown in Fig. 10. The latency is defined as
the end-to-end time between the client submitting the IO write
request and receiving the completion notice from the storage
protocol stack. The result shows that Cepheus achieves lower
latency than 3-unicasts, and delivers a comparable latency
to the ideal 1-unicast. For instance, Cepheus reduces the IO
latency by 23% and 60% in 8KB and 512KB, compared to 3-
unicasts. Note that Cepheus achieves lower latency with larger
IO sizes. As the result shows, the gap between Cepheus and
3-unicasts is enlarged as IO size increases.

The advantage of Cepheus for small IO sizes stems from
the reduced number of times the data goes through the storage
protocol stack and RoCE stack. In the case of 3-unicasts, the
identical data is transmitted three times, leading to the data
traversing the end-host stacks thrice. On the contrary, Cepheus
ensures that the message only experiences the end-host stack
once, effectively minimizing the IO latency.

2) HPL: We integrate Cepheus into HPL [25] and build
a small HPL cluster using our testbed prototype. The overall
HPL procedure includes three main phases: Panel Factoriza-
tion (PF), Panel Broadcast (PB) and Update. PB is a standard
multicast transmission, and Update includes a communication
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Fig. 12: [Simulation] FCT of a 512-scale multicast.

step, called Row Swap (RS), which can be implemented with
multicast. In HPL, nodes are arranged as a 2-D Matrix. PB
takes place among each row while RS takes place among
each column. The total volume of multicast traffic of HPL is
around tens of GBytes. We compare Cepheus with the original
HPL implementation, where PB and RS are recommended to
use the increasing-ring and long algorithms (both are AMcast
algorithms), respectively.

End-to-end Performance. We use Cepheus to accelerate
the PB and RS stages separately and measure the corre-
sponding end-to-end HPL JCT (including all three phases
mentioned above). The results are shown in Fig. 11a. For
accelerating PB and RS, we form a logic 1×4 and 4×1
matrix9, respectively; that’s why the computation time in
the two settings is slightly different. As illustrated by the
results, Cepheus reduced the HPL JCT by 12% and 4%
when PB and RS were individually accelerated, respectively.
Note that HPL is computation-intensive, and prior works [64],
[66] have demonstrated the challenge of achieving further
improvements in HPL JCT solely from the computational
aspect. In this work, we adopt a different approach by focusing
on enhancing HPL’s communication performance to improve
its overall end-to-end performance, resulting in a significant
12% enhancement.

Communication Time. With the same setting above, we
measure the communication time solely to highlight Cepheus’
acceleration on HPL communication. As shown in Fig. 11b,
Cepheus reduces the communication time of PB and RS by
67% and 18%, respectively. We further conduct a large-scale
HPL simulation (up to 128*128 nodes) as a supplement to
this testbed experiment, where Cepheus maintains consistent
performance.

C. Simulations

We provide complementary experiments using ns-3 [50].
We first evaluate Cepheus against BT and Chain over a large
multicast scale as supplements to §V-A. We then simulate a
lossy environment and measure Cepheus over different packet
loss rates. We finally evaluate the fairness of Cepheus against
unicast flows and Cepheus CC’s converging capability.
Setting. We simulate a large-scale 3-layer fat-tree topology
with 1024 servers and a 1:1 oversubscription ratio. Each server

9Due to the testbed scale, we could only arrange nodes as 4×1, 2×2, or
1×4. There is no multicast communication between the 2×2 arrangement,
which forces us to measure PB and RS separately, with 1×4 and 4×1 node
arrangements, respectively.



Chain 64
Chain 512

Cepheus 64
Cepheus 512

FC
T 

(s
)

10

20

30

Loss rate

0 1e-8
1e-7

1e-6
1e-5

1e-4

(a) FCT of multicast flows.

Chain 64
Chain 512

Cepheus 64
Cepheus 512

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

0.2
0.4
0.6
0.8
1.0

Loss rate

0 1e-8
1e-7

1e-6
1e-5

1e-4

(b) Normalized throughput.

Fig. 13: [Simulation] FCT and normalized throughput under
packet loss.

is equipped with one 100Gbps RNIC, and each switch has 64
100Gbps ports. The retransmission and CC are go-back-N and
DCQCN, same as Mellanox ConnectX-5 RNIC.
Large-scale Multicast. We simulate an extremely large-
scale multicast communication with a group size of 512.
We compare Cepheus with BT and Chain, measure the flow
completion time (FCT) under various flow sizes from 64B to
1024MB, and calculate Cepheus’ acceleration ratio. Results
shown in Fig. 12 are consistent with results in §V-A.

For short flows, Cepheus achieves up to 164× and 4.5×
lower latency compared to Chain and BT, respectively, which
is a better improvement compared to in small-scale. This is
because the minimized transmission distance of Cepheus has a
greater effect with a larger scale. The prolonged transmission
distance in Chain rapidly deteriorates its performance in large
multicast scales, ultimately causing a 164× deficiency.

For large flows, Cepheus achieves up to 2.1× and 8.9×
higher throughput, compared to Chain and BT, respectively.
Cepheus achieves better improvement over Chain and BT on
a larger scale. This is because Chain and BT require the host
to transmit identical data multiple times, where the overhead
increases with the size of MG. Cepheus maintains efficient
bandwidth utilization under MGs of any size.
Loss Tolerance. We evaluate Cepheus under different packet
loss rates, from 10−8 to 10−4, which are emulated via ran-
domly discarding packets in the middle switches. We choose
two multicast scales (64 and 512) to evaluate and set the flow
size as 128MB. Cepheus is compared to Chain. We measure
the FCT and normalized throughput compared with the setting
without loss, shown in Fig. 13. The results demonstrate that
Cepheus consistently maintains better FCT than Chain when
the scale is 64, but it performs worse under a 512 scale with
a loss rate of 10−4. We acknowledge that Cepheus throughput
decreases largely than Chain. This is because the multicast
sender in Cepheus is responsible to retransmit lost packets
for multiple receivers, while the sender in Chain is only
responsible for one receiver.

The loss tolerance of Cepheus is highly influenced by
the end-host retransmission scheme. With the go-back-N re-
transmission, Cepheus’ loss tolerance is limited. Therefore,
we recommend deploying Cepheus in a lossless network
with PFC [1] enabled, where the loss rate should be kept
below 10−4 even during traffic bursts [26], [77]. Moreover,
the recently-proposed IRN [48] can substantially enhance

f1 (multicast) f2 (unicast) f3 (unicast)

Th
ro

ug
hp

ut
 (G

bp
s)

0

50

100

Time (ms)
1 11 53 61 105 147

Fig. 14: [Simulation] Throughput dynamics of multicast and
unicast flows.

Cepheus’ tolerance to higher loss rates. To further ensure
sustainable delivery, we propose a safeguard scheme in §V-D.
Fairness and Convergence. We randomly select 16 nodes
(denoted as N0∼15) from the topology, and simulate three
flows: f1 is a N0-to-N1∼15 multicast flow, f2 is a N1-to-N2

unicast flow, and f3 is a N3-to-N4 unicast flow. Three flows
initiate sequentially as shown in Fig. 14. N2 and N4 are the
bottlenecks of f1 and f2, f1 and f3, respectively. We measure
the average throughput of f1, f2, and f3 in each millisecond.

As the result shows, Cepheus multicast flow achieves fair
sharing with unicast flow and it can adapt to changing
congestion bottlenecks. Specifically, Cepheus multicast flow
(f1) consumes bandwidth fairly when competing with unicast
flows. Cepheus grabs total bandwidth at the beginning, then
quickly converges to a fair sharing with f2. Cepheus can adapt
to different bottlenecks. As the result shows, after f2 ends,
Cepheus grabs total bandwidth again and quickly converges
to a new fair sharing with f3.

D. Safeguard Fallback

The realistic deployment of Cepheus must consider the pos-
sibility of extreme accident instances. For example, the MFT
registration process may encounter insufficient switch memory,
leading to failed initialization. Additionally, the switch or
server misconfiguration could result in an abnormally high
packet loss rate even in a lossless network, causing severe
throughput degradation for Cepheus.

To prepare for such accidents and ensure sustainable traffic
delivery, Cepheus employs a safeguard fallback scheme. This
scheme automatically switches back to the default AMcast
approach when detecting anomalies, such as facing MFT regis-
tration failures or experiencing abnormal throughput reduction
below a predefined threshold (e.g., 50%) compared to normal
conditions due to packet loss. The failure handling is not the
primary focus of this paper, and we acknowledge that our
current fallback scheme is preliminary. A more fine-grained
fallback should be helpful; for example, when just a few
nodes fail, a co-working approach of Cepheus and AMcast
is promising. We leave the compresensive failure handling as
our future work.

VI. DISCUSSIONS

Comparison with SwitchML and [33]. Cepheus differs
significantly from both SwitchML [58] and [33]. The mul-
ticast support in SwitchML is application-specific and tightly
integrated with its dedicated framework, making it challenging



to adapt for broader applications. Moreover, technically, the
RDMA multicast support in SwitchML relies on RoCE’s
Unreliable Connection (UC) transport, leaving retransmission
and other transport functionalities at the application-layer
level; this foregoes the performant capability of hardware
offloading. In contrast, Cepheus is designed as a multicast
primitive for general applications, for satisfying both latency-
and throughput-oriented requirements (as mentioned in §II-A).
Moreover, Cepheus leverages RoCE RC transport, thus inher-
iting all RC’s advantages (as mentioned in §II-B).

Similar to SwitchML, [33] also operates in UC mode. While
its goal is to adapt RDMA multicast for general applications,
[33] falls short in addressing various practical requirements.
Specifically, it lacks support for reliability, scalability, routing
paths selection, etc. In contrast, Cepheus presents a compre-
hensive design that addresses all of these requirements.
Comparison with SHARP. Cepheus takes a distinct design
principle compared to SHARP [59] in supporting reliable
multicast. SHARP treats switches and end-hosts the same. As
a result, SHARP switches implement all layer-4 transport func-
tionalities (i.e., a complete layer-4 stack), totally resembling
RNICs’ behavior, which introduces significant complexity to
SHARP switches. Moreover, SHARP switches independently
retransmit packets, necessitating packet buffering space until
the end-host confirms receipt, inducing a non-trivial memory
overhead on the switch. In contrast, Cepheus is designed to
minimize the additional switch overhead. Similar to the tradi-
tional network’s division of labor, Cepheus switch is assigned
an assisting role and only handles essential tasks, such as data
replication, header modification, and feedback handling, which
are much simpler than the full layer-4 transport. The minimal
additional switch overhead is evident in the resource usage of
our FPGA prototype (Fig. 7b).

Another significant distinction is that SHARP is dedicated
to IB networks and lacks support for RoCE in its commercial
product, while Cepheus is specifically designed for RoCE
networks. Additionally, note that the GPU-direct RDMA is
a memory management technique that is orthogonal to the
transport layer processing. Cepheus can support GPU-direct
RDMA without any obstacles.
Scalability and Resource Limit of FPGA Accelerator. The
resource usage in Fig. 7b shows that our FPGA implementa-
tion uses only a small portion of resources, indicating our
accelerator is not demanding in computation and memory
resources. The key bottleneck resource limiting the scala-
bility of the FPGA accelerator is the transceiver capacity.
The FPGA chip [71] we used has 900Gbps capacity, thus
supporting a maximum 1-to-8 (each with 100Gbps) fan-out
factor per switch. Modern FPGAs offer even greater capacity.
For instance, the Xilinx Virtex UltraScale+ [72] offers 2.6Tbps
capacity, allowing a maximum 1-to-25 fan-out factor per
switch. It’s worth noting that Cepheus supports multi-rack
multicast with bounded per-switch memory overhead; this
means that we can scale the size of multicast groups by
scaling the network topology without increasing the per-switch
overhead. For example, with a 1-to-8 per-switch fan-out, each

multicast group can reach a size of nearly 150, while a 1-to-25
per-switch fan-out can support group sizes of up to 4394 in a
standard 1:1 oversubscription 3-layer fat-tree topology. Based
on this analysis, we believe the current FPGA capacity meets
our requirements for scalability.
Security Consideration. In this work, we focus on the private
supercomputer clusters (or private cloud) owned by a single
organization and thus there is no/rare attacker (even in control
plane messages, e.g., MRP) since Internet attackers can be
blocked by gateways and firewalls. The security consideration
for the public cloud is out of the scope of this work.

VII. RELATED WORKS

Internet Multicast. Multicast has been widely applied in
large-scale Internet applications [4], [5], [7], [73]. Prior works
for the Internet [6], [14], [15], [27], [56] mostly focus on
the multicast routing, i.e., to find promising multicast paths,
inside ISPs. For instance, Yeti [14] supports effective multicast
routing for large-scale ISPs, by creating labels that represent
forwarding information of multicast graphs and utilizing them
to make forwarding decisions. Most Internet multicasts merely
provide best-effort delivery, which only works for applications
without reliability requirements.
Datacenter Reliable Multicast. Multicast can be used to
provide various upper-layer semantics, such as atomic multi-
cast [29], [36] that necessitates access order guarantee. Some
works focus on providing reliability upon NMcast for data-
center applications. However, they mainly rely on dedicated
software transport protocols [20], [57], [62], [75], leading to
notable performance drawbacks and increased development
complexity. In contrast, Cepheus leverages the baked-in RoCE
protocol to handle multicast traffic efficiently, delivering high-
performance reliable communication.
Table-free Multicast Routing. Several previous works at-
tempt to explore a table-free multicast routing scheme on
switches [16], [40], [61]. For example, Elmo [61] encodes the
multicast routing link into rules formatted as packet header,
enabling the switch only maintain rule parsing logic. Orca [16]
utilizes the server’s large memory space to assist the switch-
based forwarding, reducing the switch’s burden.

However, these works only focus on layer-3 unreliable rout-
ing without incorporating any layer-4 functionalities. Cepheus
is orthogonal with these works, aiming to empower multicast
with prominent RoCE functionality rather than solely empha-
sizing the reduction of memory overhead. Furthermore, our
scalability enhancement schemes enable Cepheus to support
a substantial number of groups with minimal switch memory
overhead.

VIII. CONCLUSION

We present Cepheus, a high-performance RoCE-capable
multicast solution that delivers performance gains from both
multicast and RDMA transport. Cepheus opens the door for ef-
ficiently leveraging the widely adopted RDMA transport with
in-switch assistance to accelerate collective communication
patterns. While this work mainly focuses on multicast; for



future works, we plan to extend Cepheus for more collective
communication primitives, such as many-to-one (e.g., MPI-
Reduce) and many-to-many (e.g., MPI-Alltoall).
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