
A Generic and Efficient Communication Framework
for Message-level In-Network Computing

Xinchen Wan1 Luyang Li2,3 Han Tian4 Xudong Liao1 Xinyang Huang1 Chaoliang Zeng1 Zilong Wang1

Xinyu Yang1 Ke Cheng5 Qingsong Ning6 Guyue Liu7 Layong Luo5 Kai Chen1
1iSINGLab, Hong Kong University of Science and Technology 2ICT,CAS 3UCAS

4USTC 5Unaffiliated 6ByteDance 7Peking University

Abstract—Message-level in-network computing (MINC)
emerges as a promising hardware acceleration method that
utilizes accelerators to offload message-level computation and
enhance application performance in the datacenter. However,
the development of MINC applications is challenging in the
communication aspect due to poor portability and under-utilized
resource.

In this paper, we present LEO, a generic and efficient commu-
nication framework for MINC. LEO facilitates portability across
both application and hardware via introducing a communication
path abstraction, which is capable of describing generic applica-
tions with predictable communication performance across diverse
hardware. It further incorporates a built-in multi-path communi-
cation over CPU and accelerator to enhance communication effi-
ciency. We have implemented a prototype of LEO and evaluated
it with four case studies on testbeds covering FPGA-based, SoC-
based smartNICs and GPU. Experiments show that LEO achieves
genericity and efficiency across MINC applications, yielding 1.2–
4.7× speedup over baselines with negligible overhead.

Index Terms—In-network computing, networking hardware

I. INTRODUCTION

In-Network Computing (INC) has emerged as a promising
technique to mitigate the gap between high-speed network
bandwidth and stagnant CPU compute capability. By of-
floading partial or entire computation tasks to accelerators
or switches located along the datapath, INC alleviates the
processing load on the CPU, reduces communication cost, and
enhances overall computation throughput.

INC can be categorized into two types: packet-level INC
(PINC) and message-level INC (MINC), based on whether
the computation occurs on packets (below the transport
layer), or on messages (above the transport layer), as de-
picted in Figure 1. PINC, which facilitates computation over
packets, is primarily executed by in-network devices such
as bump-in-the-wire (BITW) smartNICs and programmable
switches for datacenter applications such as in-network ag-
gregation [19], [33] and network management [13]. MINC,
which operates on messages, is executed by look-aside ac-
celerators such as GPUs, FPGAs, and smartNICs. Owing to
the prosperity of applications at end-host, MINC is deployed
in multiple scenarios in the datacenter, including key-value
store (KVS) [20], distributed file system (DFS) [7], elastic
block storage (EBS) [30], and distributed machine learning
(DML) [15], [37], etc. Despite the extensive research on PINC
application development [14], [43], [47], the exploration in

Endhost DCN Endhost

Program.
Switches

…

…

CPU Look-aside Acc.
E.g., GPU, smartNIC

RDMA
NIC

PCIe
Message

Packet

RDMA
NIC

PCIe
Message

Packet
…

MINC: Message-level In-Network Computing

Network Transport

PINC: Packet-level In-Network Computing

CPU

Bump-in-the-wire
Acc. E.g., smartNIC

Bump-in-the-wire
Acc. E.g., smartNIC

Fig. 1: Categorization of In-Network Computing. The network
stack in general can be classified into two domains: the
message domain above transport, and the packet domain below
transport. In this paper, the in-network computing within the
message domain (e.g., key-value store), is called message-
level INC, while that within the packet domain (e.g., packet
encryption), is called packet-level INC.

the realm of MINC has garnered less attention, given its wide
applicability and potential for performance improvement.

The development of MINC applications contains two major
aspects: computation and communication. For computation,
the task is relatively straightforward, entailing the independent
programming of hardware acceleration functions in distinct
accelerators. However, communication presents a more in-
tricate challenge, as it involves the effective organization
and implementation of dataflows among devices, thereby
demanding advanced system expertise from the application
developers1. We reveal two critical problems encountered in
MINC communication development as follows:

#1: Poor portability across applications and hardware.
When porting MINC applications to various hardware, the
issue of poor portability becomes particularly evident. Notably,
there have been several MINC applications such as KVS
offloaded to different hardware, e.g., FPGA [20] or SoC-
based smartNICs [25], [41]. However, adapting application
dataflows between these hardware while maintaining high
communication efficiency demands substantial engineering
efforts. These efforts include, but are not limited to, the
reimplementation of dataflows due to different communication
APIs, and the restructure of offloading strategies due to hard-

1In the rest of the paper, we refer to the application developers as developers
for short.



ware performance variances, etc. Experienced engineers have
estimated that such porting could take from weeks to months
to complete, highlighting the significance of portability.

#2: Under-utilized resources in existing MINC systems.
In MINC context, both CPU and accelerator resources are
available for use, providing an inherent opportunity to optimize
performance by employing these resources simultaneously.
Unfortunately, current MINC systems [20], [30], [34] tend to
neglect this opportunity, favoring instead to offload tasks to
accelerators as much as possible. Such neglect results in the
loss of computational resources in CPUs and communication
resources available in CPU-NIC links.

Given these problems, we argue the need for a new
framework that supports portability across applications and
hardware, and incorporates hybrid resource utilization. With
such a framework, developers would be able to offload routine
communication tasks to the framework and focus on the
application-specific logic.

In this paper, we present LEO, a generic and efficient
MINC communication framework. Specifically, LEO makes
the following notable contributions:
• Generic abstractions for application and hardware. To

facilitate portability, LEO proposes generic abstractions for
both application and hardware. Specifically, LEO intro-
duces a communication path abstraction to accommodate
diverse communication requirements of applications with
predictable communication performance across hardware.
Utilizing this abstraction, application dataflows can be con-
ceptually represented as a sequence of paths with predictable
communication performance, and hardware is abstracted
into different models based on its topology and associated
pre-profiled performance metrics, hence addressing #1.

• Built-in multi-path optimization. LEO integrates built-in
multi-path communication optimization to efficiently utilize
resources in both CPU and accelerator. We formulate the
multi-path selection as a linear programming (LP) problem,
which is solvable optimally using classical LP solvers [29].
To facilitate real-time path selection, we propose a heuristic
algorithm that first generates a path selection priority list
offline and then selects the appropriate path online based
on the monitored intra-host job completion times (JCTs) of
previous requests, reflecting the current path status, thereby
addressing #2.

We have implemented a prototype of LEO and evaluated it
with four representative case studies on three testbeds covering
devices including FPGA-based and SoC-based smartNICs and
GPU. Our experimental results confirm that LEO is generic and
maintains high performance for both applications and accel-
erators with negligible overhead. Specifically, LEO provides
1.2-4.7× higher speedup than baselines in four case studies.
Furthermore, the heuristic multi-path solution employed by
LEO yields 1.18–2.17× better throughput than two greedy
algorithms, and delivers comparable performance to the opti-
mal solution while satisfying the real-time selection demand.
Finally, the overhead of LEO is negligible, accounting for

M Apps

N Devices

Traditional MINC Comm. Frameworks
GPU FPGA SmartNIC

CUDA API P2P DMA DOCA API

App 1 App 2 App M…

…

Diverse communication APIs
Tedious configuration

M x N solutions

Handcrafted optimization

LEO Abs.

LEO

Unified wrappers

App 1 App 2 App M

Unified APIs
LEO Abs.LEO Abs.

…

GPU FPGA SmartNIC

CUDA API P2P DMA DOCA API

…

Unified communication APIs & wrappers
Automatic configuration

LEO
M + N solutions

Built-in optimization

Fig. 2: Comparison between traditional MINC communication
frameworks and LEO.

10.3% of CPU utilization and 1.5µs for path selection.
Figure 2 summatively compares LEO against traditional

MINC communication frameworks. In traditional frameworks,
supporting M dataflows over N hardware types necessitates de-
velopers to handcraft M×N solutions, each reliant on vendor-
specific APIs. This process is further complicated by the need
for tedious and error-prone direct data transmission config-
uration, as well as handcrafted communication optimization
strategy. In contrast, LEO introduces expressive abstractions
along with unified APIs and wrappers that simplify the pro-
gramming and configuration processes for both application
and hardware. This effectively reduces the development efforts
to M+N solutions. Furthermore, LEO incorporates a built-in
multi-path communication to utilize both CPU and accelerator.

II. BACKGROUND AND MOTIVATION

We first provide the background of message-level in-
network computing (MINC), and then discuss the problems
of MINC application development.

A. Category of In-Network Computing

In-Network Computing (INC) is a class of hardware accel-
eration approaches that offloads part of or whole computation
on the network datapath in order to free up CPU cycles,
reduce communication overhead, and boost application per-
formance [16], [17], [19], [20], [22], [23], [27], [33], [34].

Figure 1 shows the categorization of INC. Based on whether
the computation occurs on packets (below the transport layer)
or on messages (above the transport layer), INC can be further
categorized into packet-level INC (PINC) and message-level
INC (MINC). PINC processes computation over packets by
programmable devices within the network, e.g., bump-in-the-
wire (BITW) accelerators [13] and programmable switches [1],
with each packet size restricted within Maximum Transmission
Unit (MTU), e.g., 1500 B. On the other hand, MINC performs
computation over messages by look-aside accelerators at end-
host such as GPUs, FPGAs, and smartNICs, with the message
size ranging from several bytes to 10s of GB.

The differences in the size of data processing unit and the
location of accelerators result in distinct supported applica-
tions and developers: PINC favors boosting those applications
whose semantics can be expressed within a packet size,
e.g., in-network aggregation [19], [26], [33] and in-network



cache [17], [27], and is maintained mostly by infrastructure
maintainers; MINC, however, is prosperous in boosting appli-
cations that operate on a collection of data, including key-value
stores (KVS) [20], [34], file compression and decompression
in distributed file system (DFS) [7], metadata operations in
elastic block storage (EBS) [30], and collective communica-
tion in distributed machine learning (DML) [15], [35], [36],
[38], etc., thanks to its wide range size, and is typically
operated by application developers. While there has been
considerable attention towards PINC frameworks in recent
years [14], [21], [43], [47], frameworks for developing MINC
applications have not received equal focus, despite their wide
applicability and the potential for substantial performance
improvements.

B. Problems of MINC Application Development

The development of MINC applications necessitates efforts
in both computation and communication aspects. For the
computation aspect, the developers typically engage in the
programming of hardware acceleration functions for each
device independently. Thought time-consuming, this process
is relatively easy to handle. The communication aspect, how-
ever, poses greater difficulties. It demands not only effective
coordination among various devices but also the efficient
implementation of dataflows for specific application, making
the communication aspect more challenging to handle.

We discuss two problems of MINC application development
caused by the communication aspect using examples of state-
of-the-art solutions.

Poor portability across applications and hardware. Porta-
bility is of paramount importance in application development,
particularly given the diversities both in upper-layer dataflows
and lower-layer hardware platforms. Notably, multiple MINC
applications such as KVS have been successfully offloaded
to different kinds of hardware platforms including FPGA-
based [20] and SoC-based smartNICs [25], [41]. This pro-
cess, however, obligates developers to reimplement application
dataflows between devices using hardware-specific APIs and
communication modules, leading to increased yet redundant
development efforts. For instance, developing and testing
dataflows with Register Transfer Level (RTL) [11] for FPGA-
based devices can consume as much as two months for proof-
of-concept (PoC), while the time consumed to program C
over SoC-based smartNICs may be reduced to around two
weeks2. Therefore, the task of porting M dataflows to N
hardware platforms may require around 1.25×M×N months
for developing, posing substantial burdens for developers. A
more efficient approach is to develop M distinct dataflows and
N hardware solutions independently, followed by integration
through an intermediate layer. This manner effectively reduces
the development time to 1.25×(M+N), resulting in consid-
erable time savings, e.g., a reduction of 8.75 months in the

2These development time were estimated by experienced FPGA and SoC
engineers in a major company.

CPU-only
Accelerator-only
Hybrid

M
ed

ia
n 

La
t. 

Sl
ow

do
w

n

1

10

100

1000

Throughput (Mrps)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

Fig. 3: The performance improvement with hybrid dataflows
optimization.

APP 1

Multi-path Optimization Automatic Configuration

Hardware Abstraction Unified Wrappers

LEO

Application Abstraction Unified APIs

APP 2 APP 3

GPU FPGA SmartNIC

Fig. 4: LEO overview.

scenario where M is 5 for the dataflow types in KVS [41] and
N is 3 as the number of hardware models.

Under-utilized resources in existing MINC systems. Ex-
isting MINC systems do not maximally utilize the available
resources in the hardware platform. Specifically, traditional
MINC systems typically use the accelerator in the datapath
for fast processing, but ignore the usage of available host
CPU resources3 [20], [30], [34]. That is, both the CPU
resources at endhost and the CPU-NIC links are unused during
processing, exhibiting an optimization potential of hybrid
solution to embrace both resources. To reveal this potential,
we conduct an experiment to emulate the processing of a KVS
application at the server which is equipped with one CPU
and one smartNIC. We reuse the throughput results reported
in [34], i.e., 23.0Mops for 16-core CPU and 71.8Mops for 24-
core smartNIC. For the hybrid solution, we randomly select
the dataflow for each request during processing. The result
shown in Figure 3 reveals that the hybrid solution performs
significantly better than other single-path settings owing to
its better utilization of resources. Such result indicates that
a middle-layer framework with hybrid dataflow optimization
can demonstrate better performance for MINC applications.

III. LEO DESIGN

We aim to design a middle-layer communication framework
for MINC applications that addresses the above problems
simultaneously. Specifically, this framework should achieve
the following design goals:
• Generic. The framework should be generic to support mul-

tiple kinds of dataflows and diverse hardware platforms.
This genericity enables the portability across applications
and hardware, and hence reduces the development workload
for developers.

• Efficient. The communication performance this framework
provides should be as efficient as possible. Specifically, the

3iPipe [25] supports hybrid usage of host CPU and accelerator, but its
approach is inefficient when network fluctuates, as revealed in §V-B.



CPU-CPU Path CPU-Acc Path Acc-CPU Path Acc-Acc Path Physical Link

Responder
NIC

Acc CPU

Requester
NIC

CPU Acc

Path
LatencyPath MPSPath

Bandwidth
DS at

each link
Logical Link

Seq
Path 
Type

sum(lnk_lat)min(lnk_mps)min(lnk_bw)[fa, fb][CN, NC]C-C

sum(lnk_lat)min(lnk_mps)min(link_bw)[fc, fd][CN, NA]C-A

sum(lnk_lat)min(lnk_mps)min(link_bw)[fe, ff, fg][CA, AN, NC]A-C

sum(lnk_lat)min(lnk_mps)min(link_bw)[fh, fi, fj][CA, AN, NA]A-A

(a) Communication path.

Responder
NIC

Acc CPU

Requester
NIC

CPU Acc

Comp Time at
deviceDS at each linkPath ListReq DepReq Type

[[0, 3], [3.3, 0]][[8, 8], [64, 64]][C-A,C-C](PUT, ADDR)GET

[[0, 3.3], [3.3, 0]][[8, 8], [64, 64]][C-C,C-C](PUT, ADDR)GET

[[0, 3.3], [3.3, 0]][[8, 8], [64, 64]][C-C,C-C]NONEPUT

(b) Application abstractions.

Logical Link ANLogical Link CNLogical Link CA

[A-N][C-N][C-A]Physical Link

106.8 Gbps90.8 Gbps90.8 GbpsBandwidth

175 Mmps149.34 Mmps149.34 MmpsMPS

702 ns890 ns1000 nsLatency

Direct

NIC

CPU Acc

On-path

NIC

CPU Acc

Off-path

NIC

CPU Acc

(c) Hardware abstractions.

Fig. 5: MINC communication abstractions. The blue features should be provided by developers, and the red
features can be automatically profiled by LEO.

framework should utilize the resources both in CPU and
accelerator with high efficiency.

Figure 4 shows an overview of LEO. LEO proposes the
abstractions of application and hardware for describing the
diversities of both sides (§III-A). For efficiency, LEO designs
a built-in multi-path communication optimization for hybrid
resource utilization (§III-B). Besides, LEO also provides uni-
fied APIs and wrappers to developers (§III-C) and automatic
communication configuration (§IV) for ease of programming
and freeing developers from complex configuration.

A. MINC Communication Abstractions

In this section, we start by introducing the abstraction of the
communication path, which can describe diverse dataflows and
estimate their performance based on the attached hardware
transmission features provided by the lower layer. We then
elaborate on the application and hardware abstractions.

Communication path. The communication path describes
the logical links traversed by the request from the requester to
the responder, above the transport layer, with each path asso-
ciated with specific hardware transmission features. As shown
in Figure 5a, there are four types of communication paths in
MINC communication, i.e., CPU-CPU path, CPU-accelerator
path, accelerator-CPU path, and accelerator-accelerator path.
The features of each path include:

• Logical link sequence: This describes the logical link se-
quence traversed by the request from the requester to the
responder from the perspective of developer. For example,
the CPU-CPU path sequentially traverses CN (CPU-NIC) at
requester and NC (NIC-CPU) at responder.

• Data size at each link: This feature describes the size of data
traversed at each link during request processing. This value
is defined by developers to be elaborated in the application
abstractions.

• Estimated path performance: These features are determined
by metrics measured on the hardware platform, as detailed
in the hardware abstractions.

The benefits of the communication path abstraction are
two-fold. First, it provides a uniform abstraction to describe
a dataflow from the requester to the responder, and can be
extended to describe multiple round trips by composing a

sequence of multiple communication paths, thereby success-
fully describing the diverse dataflows from the application
layer. Second, it conveys estimated quantitative performance
metrics derived from the hardware layer to showcase its com-
munication performance. These estimated metrics are essential
for multi-path optimization to analyze the communication
interference across paths (§III-B).

Application abstractions. Leveraging the communication
path abstraction, the dataflow of MINC communication can be
conceptually expressed as a sequence of multiple communica-
tion paths, with each path conveying a request for one round
trip. Formally, the application abstractions are formulated as
follows, where we use KVS for illustration:
• Request type: This represents the type of the request for

processing, e.g., GET and PUT in KVS.
• Request dependency: This describes the dependency be-

tween requests to ensure correct execution, as out-of-
order cases may occur along with multi-path optimization
(§III-B). In KVS, a PUT request must be executed before
a GET request if both access data at the same address to
avoid the GET obtaining a stale value. Dependency types
include: NONE (no dependency), ADDR (same address), and
MSG (same message).

• Path list: This describes the sequence of communication
paths traversed for the corresponding dataflow. In KVS,
a GET request has two dataflow types, whereas PUT has
only one, each involving two round trips due to the network
amplification effect [41].

• Data size at each link: This describes the predetermined size
of the data structure traversed at each link during request
processing. In KVS, a GET request firstly traverses the 8-
byte key at each link and then traverses the 64-byte value
on the same path. The PUT request operates similarly.

• Compute time: This lists the compute time or memory access
time at each endhost device, which can be profiled before
processing the application.

Hardware abstractions. The hardware abstractions can be
explicitly described by the hardware model of the accelerator
and the associated performance metrics, i.e., bandwidth, mes-
sage per second, and latency [24]. We illustrate the hardware
abstractions in Figure 5c, showcasing the direct model of an
FPGA-based hardware platform (§IV) transmitting 64B mes-



Symbols Description

P = {p1, p2, ..., pi} Set of all paths
L = {l1, l2, ..., ln} Set of all intra-host links
C = {c1, c2, ..., co} Set of all compute nodes
R = {r1, r2, ..., rt} Set of all request types
L(pi) = [ci1, li1, ..., cik] Sequence of nodes and links in pi
P(rt) = [pt1, ..., ptn] Path list of rt
∆tt Time interval between rt and rt+1
S(rt) Size of rt
BW (lj) Bandwidth capacity of lj
Ttr(lj) Base traverse time of lj
Tc(cj , rt) Compute time of cj for rt
X(pi)t = {0, 1} Whether select request rt to pi at t
Q(lj)t Queue latency of lj at step t
Q(ci)t Queue latency of ci at step t

TABLE I: Key notations in problem formulation.

sages over PCIe Gen3x16. The hardware model is expressed
in nodes and edges, where each node represents a hardware
device (CPU, accelerator, NIC), and each edge represents a
physical link between devices. Note that the mapping be-
tween logical links and physical links is determined by the
hardware model. We provide three representative hardware
model abstractions [25], [39]: direct, on-path, and off-path,
and support customized model abstractions for flexibility. The
performance metrics are measured during initialization with
profiling tools such as VTune [2] and Hostping [24] for intra-
host communication.

B. Multi-path Optimization
LEO should support efficient multi-path optimization for

hybrid resource utilization. Unlike previous multi-path works
which select paths between hosts [28], [32], LEO selects paths
within each host, exhibiting several unique properties: i) Only
intra-host communication needs to be considered since inter-
host communication is handled and transparentized by the
hardware transport, e.g., RDMA; ii) Sufficient information
is available in both the application and hardware, including
communication paths for each request type, profiled compute
times, and hardware models.

These properties simplify the path selection problem, mak-
ing it solvable theoretically. We first formulate the path selec-
tion problem as a linear programming (LP) problem, which is
solvable optimally with off-the-shelf LP solvers [29] (§III-B1).
Next, we propose a heuristic algorithm to address the time
constraints of the LP solver (§III-B2).

1) Problem Formulation: Table I lists the key notations
used for problem formulation. We address the path selection
problem at a fine-grained, per-request level. Specifically, we
discretize the entire processing time into separate steps, with
each step spanning ∆tt, representing the arrival time interval
between request rt and rt+1. Our primary objective is to
minimize the total intra-host JCT, which are the sum of
their compute and communication time within hosts. As the
compute time Tc(cj , rt) is fixed and known in advance, our
main focus is to minimize the communication cost, defined as
the sum of transmission time and queue latency at each link
and compute node.

While the transmission time is fixed, the queue latency
varies over time and depends on the previous queuing status:

Q(ci)t =


max{Q(ci)t−1 + Tc(ci, rt)−∆tt, 0} if ci ∈ L(pi)

&&X(pi)t = 1

max{Q(ci)t−1 −∆tt, 0} otherwise
(1)

Q(lj)t =


max{Q(lj)t−1 +

S(rt)
BW (lj)

−∆tt, 0} if lj ∈ L(pi)
&&X(pi)t = 1

max{Q(lj)t−1 −∆tt, 0} otherwise
(2)

where Q(ci)t and Q(lj)t increases only if the request at time
t selects pi and traverses ci or lj , otherwise they decrease by
∆tt. As these equations contain non-linear max{·} functions,
we apply the big-M method to linearize them for resolution.

We denote the queue latency and traverse time of path pi
at time t as Q(pi)t =

∑
ci∈L(pi)

Q(ci)t +
∑

lj∈L(pi)
Q(lj)t

and T (pi, rt)t =
∑

lj∈L(pi)
Ttr(lj) +

∑
cj∈L(pi)

Tc(cj , rt),
respectively. Formally, the objective function and constraint
of k-step path selection problem are:

min

t=n+k∑
t=n

∑
pi∈P

X(pi)t · [Q(pi)t + T (pi, rt)t] (3)

∑
pi∈P(rt)

X(pi)t = 1 (4)

where (3) aims to minimize the total intra-host JCTs for all
paths over a short horizon, i.e., the next k request sequence
predicted using historical request trace [44], while (4) imposes
the path selection constraint, ensuring that each request is
assigned to exactly one path.

Notably, when k=1, the LP algorithm simplifies to a greedy
version that selects the path with the least JCT for each request
type. This approach optimistically assumes the network can
handle all queued requests. However, in practice, high request
throughput can cause queuing across paths, leading to high
queuing latency and degraded performance, as our results
reveal (§V-C).

2) Heuristic Multi-path Selection: Though promising, the
time cost of LP solver [29] is too high, e.g., ≥2.4 ms in
our evaluation (§V-C), to fulfil the real-time requirement of
µs-level applications. To address this, we propose a per-
request-type heuristic algorithm for real-time path selection.
We observe a trade-off between selecting a queuing path with
low latency and an idle path with high latency. Adding a
request to the queuing path increases the queue latency for
all subsequent requests until the queue is drained, leading to
an extra cost k̂ · [

∑
ci∈L(pi)

Tc(ci, rt) +
∑

lj∈L(pi)
S(rt)

BW (lj)
]

according to (3), where k̂ denotes the number of requests
that will experience the queue latency caused by the current
request. We call it the communication toll of the path decision.
Finally, the trade-off is transformed into balancing between the
immediate JCT gain and the incurred communication toll.

Algorithm overview. Our algorithm operates in two phases:
we firstly offline calculate the traverse time and communica-
tion tolls for all request-path pairs, and then online select path
via estimating the path status according to the intra-host JCTs
of completed requests.

In the offline phase, we calculate the basic path traverse time
T (pi, rt)t =

∑
lj∈L(pi)

Ttr(lj) +
∑

cj∈L(pi)
Tc(cj , rt) and



REQ

RES
P

t1: t_enqueue

t2: t_sent

t3: t_remote_nic_rx

t4: t_remote_host_tx

t5: t_local_nic_rx
t6: t_local_rx

Local Tx Delay

Local Rx Delay

Remote
Delay

Fig. 6: Timestamps used to measure different delays at end-
hosts. The hardware and software timestamps are shown in
blue and red, respectively. The intra-host JCT is the sum of
all delays shown in the figure.

Message Payload
Appended locally

0 …… 31 0 …… 31
Remote Delay NIC Rx Timestamp

Fig. 7: Message format of LEO.

the communication toll Qtoll(pi)t =
∑

ci∈L(pi)
Tc(ci, rt) +∑

lj∈L(pi)
S(rt)

BW (lj)
for each path pi and request type rt. We

use the path traverse time T (pi, rt)t to generate the initial
path selection priority list for each request type, as the queue
is initially empty in each path.

Next, in the online phase, we select the appropriate path
according to both the current JCT and the communication
toll. We denote k̂pi as the estimated number of requests that
will experience queue latency caused by the current request if
selecting pi. Then, the JCTs of the subsequent k̂pi

requests will
also increase by Qtoll(pi)t. Consequently, the total intra-host
JCT is Ttotal(pi)t = k̂pi

· Qtoll(pi)t + T (pi, rt)t. By simply
comparing the Ttotal(pi)t of all paths, we select the path with
the minimal value as the final choice, thus approximating (3).

Estimation of k̂pi
. The key challenge of the algorithm is

to estimate the value of k̂pi
to accurately reflect each path’s

status. We achieve this by monitoring the intra-host JCTs
of previous requests, following the similar method as [18],
and using these JCTs as indicators of the current path status.
Notably, modern NICs widely support accessible hardware
timestamps at hosts [10], [18]. Therefore, LEO uses multiple
hardware and software timestamps to collaboratively monitor
the intra-host JCT of each path.

Figure 6 illustrates the event sequence of a request travers-
ing the path. t1 and t2 are the times when the message is
enqueued to the corresponding path and to the NIC queue,
respectively, recorded by LEO using the CPU. t3 is the time
when the descriptor of the request, i.e., CQE, is obtained at
the server side by RNIC. t4 is the time when the message
is enqueued to the NIC queue, recorded by the CPU. Note
that t4-t3 is calculated by the server CPU and appended in
the message header. t5 and t6 are the corresponding receive
timestamps for the response at the client side and are appended
locally at the client. Details of the message format are shown
in Figure 7. Finally, the overall intra-host JCT of the path is
calculated as (t2 − t1) + (t4 − t3) + (t6 − t5).

Based on the above monitored intra-host JCT, we can now
estimate the value of k̂pi for each path. Specifically, we
initialize k̂pi to 0 for each path and follow these procedures
during application runtime: i) Upon receiving a completed
request, we compare the monitored JCT with the base traverse

APIs Description

init() Init LEO comm. context.
send(m) Two-sided send a message.
recv() → m Two-sided receive a message.
write(m) One-sided write a message.
read() → m One-sided read a message.
handle(m,r) Handle a message for role.

Wrappers Description

reg_comm_func(f,n,r) Register a comm. function.
reg_mem_func(f,n,r) Register a memory function.
reg_ts_func(f,n) Register a timestamp function.
reg_app_func(f,n,r) Register an application function.

TABLE II: LEO APIs and wrappers.

time T (pi, rt)t; ii) If the monitored value is larger, it indicates
the queue exists in the path, and we increase k̂pi

by one,
otherwise we reset k̂pi

to zero.

C. LEO Programming

APIs and wrappers. LEO wraps its communication and
memory configuration together with communication optimiza-
tion in unified APIs and wrappers. As listed in Table II, LEO
APIs and wrappers include:
• init initializes the MINC communication. It automatically

sets up direct communication across devices based on the
registered handlers and functions.

• send, recv, write, and read are simple RDMA
ib verbs-style communication APIs for data transmission.

• handle is a unified API for handling incoming requests.
Upon receiving a request, it automatically invokes the regis-
tered application functions at the specified device role. Note
that the role can be either ”cpu” or ”acc”.

• reg_xxx_func is a series of function pointer wrappers
for registering hardware-specific functions, including com-
munication, memory, timestamp service, and application.

Programming procedures. Using LEO APIs and wrappers,
developers can easily program MINC applications by follow-
ing these steps:
1) Implement application functions for processing incoming

requests on both CPU and accelerator.
2) Configure the communication path in YAML format based

on the communication path abstraction in §III-A.
3) Configure the dataflows for each request type in YAML

format based on the application abstractions in §III-A.
4) Write initialization code with LEO APIs to register func-

tions, pin memory, configure memory mapping, and ini-
tialize dataflows. We omit the example configuration code
here due to space limitation.

5) Implement the application processing code with LEO APIs.

IV. IMPLEMENTATION

We have implemented a fully functional LEO prototype for
developing MINC communication. It currently supports rep-
resentative FPGA-based smartNICs [6], SoC-based BlueField-
3 [3] and GPU. Below we illustrate LEO’s implementation, our
efforts undertaken for an FPGA-based emulation platform and
the automatic configuration scheme.



CPU

Accel

FPGA

EP0 EP1

PCIe
SW

RNIC

PCIe DMA

(a) Direct

CPU

Accel

FPGA

EP0 EP1

PCIe
SW

RNIC

PCIe DMA

(b) On-path

Router

Transport

CPU

Accel

FPGA

EP0 EP1

PCIe
SW

RNIC

PCIe DMA

(c) Off-path
Fig. 8: Hardware platform architecture.

Modules LUT Registers BRAM URAM

PCIe P2P 3.3% 1.66% 3.01% 5%
Router 0.12% 0.09% 3.95% 0%

EBS lookup functions 4.8% 3.8% 12.9% 8.5%

TABLE III: Resource usage of hardware platform in Xilinx
VU35P FPGA board.

LEO implementation. We implement LEO in C++ and inte-
grate it with MLNX OFED-5.4-3.0.3.0, CUDA 12.4, NCCL
2.20.5, and DOCA 2.2.2. We create 5 queue pairs (QPs)
in userspace for ease of deployment and to avoid kernel
syscall overhead. For the timestamp service, we set flags of
CQs for hardware timestamping [9], and record the software
timestamps when enqueuing and dequeuing descriptors. To
calculate the time interval, we enable PTP in NIC and convert
HCA clock to ns using mlx5dv_ts_to_ns before calcu-
lation. Additionally, we implement the LP algorithm using
CPLEX [29] and the heuristic algorithm purely in C++, both
running on separate threads for online path selection.

FPGA-based emulation platform. To evaluate the genericity
of LEO across hardware models, we implement an FPGA-
based platform with a Xilinx VU35P FPGA [6], featuring
a PCIe Gen3x16 interface and a 100Gbps Ethernet port.
This platform integrates accelerator and RDMA NIC [40]
logic. We emulate different hardware models by modifying
FPGA transmission logic (Figure 8): in the direct model, the
accelerator and NIC are isolated and connected via a shared
PCIe switch; in the on-path model, they are connected via
AXI, with only end-point 0 (EP0) linked to the CPU; and in
the off-path model, only EP1 is active, with a router in the
RNIC enabling packet routing.

We list the detailed hardware resource consumption in Ta-
ble III. Note that the EBS lookup functions are developed for
emulating three lookup functions in EBS which consumes on-
chip resource, while for KVS, its index lookup consumes no
on-chip resource as we store the large KV table (20M KV-
pairs) in FPGA HBM (§V-A).

Automatic communication configuration. LEO simplifies
device communication by automating configuration using
developer-provided wrappers, reducing complexity. For ex-
ample, in an FPGA Direct RNIC setup, the FPGA memory
is mapped to the PCIe BAR space, which LEO registers as
memory regions (MRs) in RNIC along with address translation
data. LEO then initializes inter-host communication using
standard RDMA procedures and exchanges MR information

Application Testbed HW Model Baseline

KVS F-NIC Off-path DrTM-KV [42]
DFS BF-3 Off-path DOCA [7]
EBS F-NIC On-path Solar [30], iPipe [25]
DML G+F-NIC Direct NCCL [4]

TABLE IV: Representative MINC applications with their em-
ployed testbed configurations, hardware models, and baselines.

to enable direct data transfer. By adhering strictly to PCIe P2P
and RDMA protocols [5], [8], this approach ensures generality
across devices..

V. EVALUATION

In this section, we evaluate LEO’s performance to answer
the following questions:
• How generic and efficient is LEO against the state-of-

the-art frameworks when processing each application?
We show that LEO supports all types of MINC applica-
tions across different testbeds listed in Table IV, and can
achieve 1.2–4.7× better performance than state-of-the-art
frameworks (§V-B).

• How effective is LEO in terms of its component and
overhead? We show that LEO’s components effectively
improves the performance of MINC communication (§V-C).
Specifically, the multi-path optimization reduces the median
latency of MINC communication by 1.3×. Besides, we also
demonstrate that LEO introduces negligible CPU overhead
and low processing time (§V-C).

A. Experimental Setup

Testbed configurations. We run our experiments using
three testbed configurations: F-NIC, G+F-NIC, and BF-3.
All testbeds use the same topology, i.e., two servers directly
connected with each other, but with different devices:
• F-NIC adopts Intel servers with 8-core Xeon Silver 4110

CPU, 192GB memory, PCIe 3.0, 100GE cables, and Xilinx
VU35P FPGAs.

• G+F-NIC employs the same servers as F-NIC with the
addition of NVIDIA A10 GPUs connected.

• BF-3 uses Intel servers with 32-core Xeon Silver 4309Y
CPU, 512GB memory, PCIe 4.0, 200GE cables, and
NVIDIA BlueField-3.

Case studies & baselines. To extensively evaluate LEO, we
implement four representative MINC applications running on
three types of hardware models and compare them with state-
of-the-art baselines, as listed in Table IV.
• Key-value store: We implement KVS by executing the index

lookup in FPGA and facilitating one READ to retrieve the
index from FPGA and another WRITE/READ for the value
in host memory. We compare LEO with DrTM-KV [42] over
the same off-path F-NIC testbed.

• Distributed file system: We use DOCA [7] as the baseline
which compresses/decompresses 1MB file with 256KB IO
chunks and a 51.8% compression ratio, and compare with
LEO using the same off-path BF-3 testbed.



DrTM-KV
Leo w/o multi-path
Leo

M
ed

ia
n 

La
te

nc
y 

(μ
s)

10

100

Throughput (Mrps)
0 1 2 3 4 5 6 7

(a) YCSB-C workload.

DrTM-KV
Leo w/o multi-path
Leo

M
ed

ia
n 

La
te

nc
y 

(μ
s)

20

50

100

200

Throughput (Mrps)
0 1 2 3 4 5 6 7

(b) YCSB-B workload.
Fig. 9: Performance of key-value store.

• Elastic block storage: As Solar [30] is not open-sourced,
we implement its offloaded QoS, block, and address lookup
functions in FPGA to emulate read requests4. iPipe [25]
is a customized on-path smartNIC framework that supports
dynamic function placement between the host CPU and
smartNIC. We emulate it by first profiling the base JCT of
offloading all functions in FPGA and then online invoking
functions in CPU to emulate actor migration5 when current
JCT is larger than base JCT and vice versa. We conduct
these experiments using the same on-path F-NIC testbed.

• Distributed machine learning: We use only the RNIC mod-
ule in FPGA and configure GPUDirect-FNIC via PCIe
P2P [5]. We compare LEO with NCCL [4] over the same
direct G+F-NIC testbed.

In all experiments, we add delays at the requester NIC to
simulate network variation between hosts [46], with the value
ranging from 3 to 9µs according to [45].

Metrics. We report the median latency under different request
rates for latency-intensive key-value stores and throughput for
other throughput-intensive applications.

B. End-to-end Application Performance

Key-value store. We use YCSB-C and B [12] as our
workloads, as used in prior work [42]. The YCSB-C workload
only contains the GET request. As shown in Figure 9a, we
observe that the LEO counterpart without multi-path support
starts to increase its median latency when system workload
is above 5Mrps, outperforming the CPU-based DrTM-KV by
∼1.5×. The reason for the higher sustainable throughput is
attributed to the efficient computation at accelerators. LEO out-
performs both its variant and DrTM-KV by delivering stably
low latency and higher sustainable throughput. Specifically,
LEO delivers 1.2–2× higher sustainable throughput over its
counterparts, as its system demonstrates higher computation
capacity by introducing both CPU and accelerator for handling
the incoming request streams. Meanwhile, LEO exhibits stably
low median latency with the increasing of the offered load. The
reason comes from its careful path-selection algorithm, which
helps LEO to balance the load among multiple computation
sources and mitigate the potential temporal overload.

For the YCSB-B workload, it contains both GET and PUT
requests. For the PUT request, it can only be processed by

4The SEC and CRC parts in Solar are handled by RDMA transport.
5We omit the procedure of actor migration for ease of emulation, but it can

actually degrade performance.

DOCA
CPU
Leo

Th
ro

ug
hp

ut
 (G

bp
s)

0

5

10

15

20

Number of Cores
1 2 4 8

Fig. 10: Performance of distributed file system.

CPU
Solar
iPipe
Leo

Th
ro

ug
hp

ut
 (G

B/
s)

0

2

4

6

8

10

Number of Cores
1 2 3

(a) Throughput of 64KB read.

CPU
Solar
iPipe
Leo

IO
PS

 (x
10

5 )

0

1

2

3

4

5

6

Number of Cores
1 2 3

(b) IOPS of 4KB read.

Fig. 11: Performance of elastic block storage.

the CPU, since there are currently no sophisticated mecha-
nisms for maintaining data consistency at the accelerator. The
scheduling in this workload is more complex as the placement
constraints and the uniform workload regarding execution
times. As shown in Figure 9b, both LEO and its variant deliver
as much as 3× higher throughput than DrTM-KV, while LEO
achieves the highest throughput. The reason aligns with the
case in Figure 9a. This experiment further demonstrates the
benefits of LEO’s incorporation of CPU and accelerator and
effective scheduling with balancing load among multiple paths.

Distributed file system. We conduct the experiments by
compressing the 1MB file at the requester and write to the
responder for decompression. Figure 10 shows the throughput
with an increasing number of cores on both sides. We find
that DOCA performs the worst because its compression time
is longer than that of the CPU, i.e., 2.18ms vs 0.89ms, due to
the fact that the compression firmware on BF-3 is less powerful
than a single core at the server. When increasing the number
of cores, both approaches show improved performance due to
better decompression pipeline at the responder. Overall, LEO
outperforms DOCA and CPU by 1.19–4.69× as the number
of clients increases. The enhancement is attributed to LEO’s
effective utilization of hybrid resources.

Elastic block storage. We use the same experiment setting
of [30] and compare the 64KB throughput and 4KB IOPS
(I/O per second) of LEO with CPU, Solar, and iPipe. The
results shown in Figure 11 reveal that Solar achieves bet-
ter performance than CPU-based solution, as it reduces the
processing latency via dataplane offloading. iPipe is better
for migrating some functions to CPU according to the online
end-to-end JCTs. It achieves better throughput and IOPS by
1.04–1.25× and 1.19–1.71×, respectively, than CPU and Solar
with different number of cores. However, it performs worse
than LEO as its migration signal, end-to-end JCT, can be
affected by network variation. The fluctuation may result
in a false migration from a good offloading placement to
a worse one. Besides, we remind readers that we did not
emulate the actor migration process, which could result in



OpenMPI
NCCL
Leo

Th
ro

ug
hp

ut
 (G

bp
s)

0

20

40

60

80

100

Message Size (Bytes)
4 16 64 256 1K 4K 16K 64K 256K 1M 4M 16M 64M256M 1G 4G 16G

Fig. 12: Performance of DML allreduce.

even worse performance with frequent migrations. Overall,
LEO demonstrates the highest performance among all, thanks
to its better resource utilization with multi-path and intra-host
JCT signal for load balancing. Specifically, with LEO, the
throughput of 64KB read increases by 1.14–1.75× given the
varying number of CPU cores, while the IOPS of 4KB read
also exhibits a rise of 1.1–1.9×.

Distributed machine learning. Allreduce is a key communi-
cation pattern in distributed machine learning, with varying
message sizes representing different sizes of gradients and
parameters. We compare the allreduce throughput of LEO,
NCCL, and OpenMPI with different message sizes. As shown
in Figure 12, LEO consistently delivers the highest throughput
in all message sizes. For large messages (≥1MB), LEO shows
a substantial throughput improvement over OpenMPI. Com-
pared to NCCL, LEO’s throughput is on average 4.08× higher
for messages ranging from 4KB to 1GB. Other message sizes
perform similarly. OpenMPI performs worst among all due to
the low processing capability of the CPU. The benefit of LEO
is attributed to its use of idle compute resources through its
multi-path design, allowing it to saturate the link faster than
NCCL.

C. LEO Deep Dive

Effectiveness of path selection algorithm. We compare
the heuristic algorithm adopted in LEO with two greedy
algorithms, i.e., selecting path with minimal end-to-end JCTs
(Greedy-E2E) and minimal intra-host JCTs (Greedy-Intra), as
well as the optimal LP algorithm in the key-value store ap-
plication. We do not predict the request sequence but directly
pre-record the history of the request sequence and solve the
LP problem offline for each step to obtain the performance
of the optimal solution. The results are shown in Figure 13.
We observe that Greedy-E2E performs the worst as it can
misselect paths due to network fluctuation between hosts.
Greedy-Intra performs better since it only uses the intra-host
JCT for selection. However, this algorithm operates in a greedy
manner but overlook the temporal queuing delay effect, i.e.,
the communication toll, caused by the current path decision
(similar to k=1 algorithm illustrated in §III-B1), and therefore
performs poorly over a horizon of requests. LEO demonstrates
1.18–2.17× performance gain over the two greedy algorithms,
stemming from both the intra-host JCT to reflect path status
and the consideration of communication toll. Besides, we also
observe that LEO achieves comparable performance to the
optimal solution, which knows the whole request sequence

Greedy-E2E
Greedy-Intra
Optimal
Leo

M
ed

ia
n 

La
te

nc
y 

(μ
s)

10

100

Throughput (Mrps)
0 1 2 3 4 5 6 7

(a) YCSB-C workload.

Greedy-E2E
Greedy-Intra
Optimal
Leo

M
ed

ia
n 

La
te

nc
y 

(μ
s)

10

100

Throughput (Mrps)
0 1 2 3 4 5 6 7

(b) YCSB-B workload.
Fig. 13: Effectiveness of LEO multi-path optimization.

in advance. This observation reveals the effectiveness of the
heuristic algorithm in LEO.

LEO framework overhead. We seek to understand the
framework overhead of LEO. We measure the CPU utilization
of the heuristic algorithm, the processing time of algorithms
and analyze the header overhead. We find that LEO can
run the heuristic algorithm for µs-level applications, with an
average cost of 10.3% CPU utilization. We also report the
path selection time for one request. Specifically, the LP solver
takes as much as 2.4ms, and the heuristic algorithm consumes
only ∼1.5µs, demonstrating its applicability in real-time path
selection. For the message header, it takes up as much as 4
bytes for each response message. The overhead depends on the
response size, ranging from 1.6×10−5 for DFS with 256KB
chunks to 5.9% for KVS with 64B values in the case studies.

VI. RELATED WORK

Network-software co-design of INC. Systems with network-
software co-design for INC have been illustrated in §II-A.

PINC frameworks. There have been several frame-
works [14], [43], [47] proposed recently to facilitate PINC
application development. These works are generic to serve
PINC hardware rather than MINC hardware.

MINC frameworks. iPipe [25] automates fine-grained actor
migration between CPU and on-path smartNICs. Floem [31]
is a smartNIC compiler that eases the developers’ program-
ming effort. However, these frameworks are customized for
smartNICs only, but do not support other PCIe devices such as
GPUs and FPGAs. Moreover, they either do not support hybrid
resource utilization or perform poor load balancing when inter-
host network fluctuates (§V-B).

VII. CONCLUSION

This paper presents LEO, a generic and efficient communi-
cation framework for MINC applications. Experiment results
with four case studies over three testbeds have demonstrated
the genericity and efficiency of LEO. We hope LEO could serve
as a stepping stone for the development of MINC applications
and inspire research for MINC.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive
comments. This work is supported in part by the Hong
Kong RGC TRS T41-603/20R, GRF 16213621, ITF ACCESS,
NSFC 62062005, and the National Natural Science Fund for
the Excellent Young Scientists Fund Program (Overseas). Kai
Chen is the corresponding author.



REFERENCES

[1] Intel tofino p4-programmable ethernet switch asic that delivers better
performance at lower power. https://www.intel.com/content/www/us/en/
products/network-io/programmable-ethernet-switch/tofino-series/tofino.
html, 2023.

[2] Intel vtune profiler. https://www.intel.com/content/www/us/en/
developer/tools/oneapi/vtune-profiler.html, 2023.

[3] Nvidia bluefield networking platform. https://www.nvidia.com/en-us/
networking/products/data-processing-unit/, 2023.

[4] Nvidia collective communication library. https://developer.nvidia.com/
nccl, 2023.

[5] Pci-sig specifications. https://pcisig.com/specifications, 2023.
[6] Virtex ultrascale+ fpga. https://www.xilinx.com/products/

boards-and-kits/device-family/nav-virtex-ultrascale-plus.html, 2023.
[7] Doca compress. https://docs.nvidia.com/doca/sdk/doca+compress/index.

html, 2024.
[8] Infiniband specification. https://www.afs.enea.it/asantoro/V1r1 2 1.

Release 12062007.pdf, 2024.
[9] Time-stamp service. https://docs.nvidia.com/networking/

display/mlnxofedv571020/time-stamping#src-2396584992
TimeStamping-time-stampingservice, 2024.

[10] Time-stamping service. https://docs.nvidia.com/networking/display/
mlnxofedv473290/time-stamping, 2024.

[11] Vhdl and fpga terminology. https://vhdlwhiz.com/terminology/
simulation/, 2024.

[12] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking cloud serving systems with ycsb. In
SoCC, 2010.

[13] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou,
Alireza Dabagh, et al. Azure accelerated networking:smartnics in the
public cloud. In NSDI, pages 51–66, 2018.

[14] Jiaqi Gao, Ennan Zhai, Hongqiang Harry Liu, Rui Miao, Yu Zhou,
Bingchuan Tian, Chen Sun, Dennis Cai, Ming Zhang, and Minlan
Yu. Lyra: A cross-platform language and compiler for data plane
programming on heterogeneous asics. In SIGCOMM, pages 435–450,
2020.

[15] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanx-
iong Guo. A unified architecture for accelerating distributed dnn training
in heterogeneous gpu/cpu clusters. In OSDI, pages 463–479, 2020.

[16] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert
Soulé, Changhoon Kim, and Ion Stoica. Netchain: Scale-free sub-rtt
coordination. In NSDI, pages 35–49, 2018.

[17] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate
Foster, Changhoon Kim, and Ion Stoica. Netcache: Balancing key-value
stores with fast in-network caching. In SOSP, pages 121–136, 2017.

[18] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan MG Wassel,
Xian Wu, , et al. Swift: Delay is simple and effective for congestion
control in the datacenter. In SIGCOMM, pages 514–528, 2020.

[19] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi Chen, Wenfei Wu,
Aditya Akella, and Michael M Swift. Atp: In-network aggregation for
multi-tenant learning. In NSDI, volume 21, pages 741–761, 2021.

[20] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang
Xiong, Andrew Putnam, Enhong Chen, and Lintao Zhang. Kv-direct:
High-performance in-memory key-value store with programmable nic.
In SOSP, pages 137–152, 2017.

[21] Bojie Li, Kun Tan, Layong Luo, Yanqing Peng, Renqian Luo, Ningyi
Xu, Yongqiang Xiong, Peng Cheng, and Enhong Chen. Clicknp: Highly
flexible and high performance network processing with reconfigurable
hardware. In SIGCOMM, pages 1–14, 2016.

[22] Wenxue Li, Junyi Zhang, Yufei Liu, Gaoxiong Zeng, Zilong Wang,
Chaoliang Zeng, Pengpeng Zhou, Qiaoling Wang, and Kai Chen.
Cepheus: accelerating datacenter applications with high-performance
roce-capable multicast. In HPCA, 2024.

[23] Xiaozhou Li, Raghav Sethi, Michael Kaminsky, David G Andersen, and
Michael J Freedman. Be fast, cheap and in control with switchkv. In
NSDI, pages 31–44, 2016.

[24] Kefei Liu, Zhuo Jiang, Jiao Zhang, Haoran Wei, Xiaolong Zhong,
Lizhuang Tan, Tian Pan, and Tao Huang. Hostping: Diagnosing intra-
host network bottlenecks in rdma servers. In NSDI, pages 15–29, 2023.

[25] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishnamurthy, Simon
Peter, and Karan Gupta. Offloading distributed applications onto
smartnics using ipipe. In SIGCOMM, pages 318–333. 2019.

[26] Shuo Liu, Qiaoling Wang, Junyi Zhang, Wenfei Wu, Qinliang Lin, Yao
Liu, Meng Xu, Marco Canini, Ray CC Cheung, and Jianfei He. In-
network aggregation with transport transparency for distributed training.
In ASPLOS, pages 376–391, 2023.

[27] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li, Changhoon Kim,
Vladimir Braverman, Xin Jin, and Ion Stoica. Distcache: Provable load
balancing for large-scale storage systems with distributed caching. In
FAST, volume 19, pages 143–157, 2019.

[28] Yuanwei Lu, Guo Chen, Bojie Li, Kun Tan, Yongqiang Xiong, Peng
Cheng, Jiansong Zhang, Enhong Chen, and Thomas Moscibroda. Multi-
path transport for rdma in datacenters. In NSDI, pages 357–371, 2018.

[29] CPLEX User’s Manual. Ibm ilog cplex optimization studio. Version,
12(1987-2018):1, 1987.

[30] Rui Miao, Lingjun Zhu, Shu Ma, Kun Qian, Shujun Zhuang, Bo Li,
Shuguang Cheng, Jiaqi Gao, Yan Zhuang, Pengcheng Zhang, et al.
From luna to solar: the evolutions of the compute-to-storage networks
in alibaba cloud. In SIGCOMM, pages 753–766, 2022.

[31] Phitchaya Mangpo Phothilimthana, Ming Liu, Antoine Kaufmann, Si-
mon Peter, Rastislav Bodik, and Thomas E Anderson. Floem: A
programming system for nic-accelerated network applications. In OSDI,
volume 18, pages 663–679, 2018.

[32] Costin Raiciu, Sebastien Barre, Christopher Pluntke, Adam Greenhalgh,
Damon Wischik, and Mark Handley. Improving datacenter performance
and robustness with multipath tcp. SIGCOMM, 2011.

[33] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,
Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan Ports,
and Peter Richtarik. Scaling distributed machine learning with In-
Network aggregation. In NSDI, 2021.

[34] Henry N Schuh, Weihao Liang, Ming Liu, Jacob Nelson, and Arvind
Krishnamurthy. Xenic: Smartnic-accelerated distributed transactions. In
SOSP, pages 740–755, 2021.

[35] Xinchen Wan, Kai Chen, and Yiming Zhang. Dgs: Communication-
efficient graph sampling for distributed gnn training. In ICNP, 2022.

[36] Xinchen Wan, Kaiqiang Xu, Xudong Liao, Yilun Jin, Kai Chen, and
Xin Jin. Scalable and efficient full-graph gnn training for large graphs.
In SIGMOD, 2023.

[37] Xinchen Wan, Hong Zhang, Hao Wang, Shuihai Hu, Junxue Zhang, and
Kai Chen. Rat-resilient allreduce tree for distributed machine learning.
In APNet, pages 52–57, 2020.

[38] Hao Wang, Han Tian, Jingrong Chen, Xinchen Wan, Jiacheng Xia,
Gaoxiong Zeng, Wei Bai, Junchen Jiang, Yong Wang, and Kai Chen.
Towards domain-specific network transport for distributed dnn training.
In NSDI, 2024.

[39] Zeke Wang, Hongjing Huang, Jie Zhang, Fei Wu, and Gustavo Alonso.
Fpganic: An fpga-based versatile 100gb smartnic for gpus. In ATC,
pages 967–986, 2022.

[40] Zilong Wang, Layong Luo, Qingsong Ning, Chaoliang Zeng, Wenxue
Li, Xinchen Wan, Peng Xie, Tao Feng, Ke Cheng, Xiongfei Geng, et al.
Srnic: A scalable architecture for rdma nics. In NSDI, pages 1–14, 2023.

[41] Xingda Wei, Rongxin Cheng, Yuhan Yang, Rong Chen, and Haibo Chen.
Characterizing off-path smartnic for accelerating distributed systems. In
OSDI, 2023.

[42] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo Chen. Deconstruct-
ing rdma-enabled distributed transactions: Hybrid is better! In OSDI,
pages 233–251, 2018.

[43] Wenquan Xu, Zijian Zhang, Yong Feng, Haoyu Song, Zhikang Chen,
Wenfei Wu, Guyue Liu, Yinchao Zhang, Shuxin Liu, Zerui Tian,
et al. Clickinc: In-network computing as a service in heterogeneous
programmable data-center networks. In SIGCOMM, pages 798–815,
2023.

[44] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. A
control-theoretic approach for dynamic adaptive video streaming over
http. In SIGCOMM, pages 325–338, 2015.

[45] Junxue Zhang, Wei Bai, and Kai Chen. Enabling ecn for datacenter
networks with rtt variations. In CoNEXT, pages 233–245, 2019.

[46] Junxue Zhang, Chaoliang Zeng, Hong Zhang, Shuihai Hu, and Kai Chen.
Liteflow: towards high-performance adaptive neural networks for kernel
datapath. In SIGCOMM, pages 414–427, 2022.

[47] Bohan Zhao, Wenfei Wu, and Wei Xu. Netrpc: Enabling in-network
computation in remote procedure calls. In NSDI, pages 199–217, 2023.


