USENIX

THE ADVANCED COMPUTING
SYSTEMS ASSOCIATION

Towards Optimal Rack-scale ps-level CPU
Scheduling through In-Network Workload Shaping

Xudong Liao, Hong Kong University of Science and Technology; Han Tian, University
of Science and Technology of China; Xinchen Wan, Hong Kong University of Science
and Technology,; Chaoliang Zeng, Bitintelligence; Hao Wang, Hong Kong University
of Science and Technology,; Junxue Zhang, University of Science and Technology of

China; Mengyu Ma, Inspur; Guyue (Grace) Liu, Peking University;
Kai Chen, Hong Kong University of Science and Technology

https://www.usenix.org/conference/atc25/presentation/liao

This paper is included in the Proceedings of the
2025 USENIX Annual Technical Conference.

July 7-9, 2025 « Boston, MA, USA
ISBN 978-1-939133-48-9

Open access to the Proceedings of the
2025 USENIX Annual Technical Conference
is sponsored by

alllasc &llall aeala

.\\‘—__ King Abdullah University of

Science and Technology

Towards Optimal Rack-scale ps-level CPU Scheduling through In-Network

Workload Shaping
Xudong Liao'! Han Tian?> Xinchen Wan! Chaoliang Zeng® Hao Wang' Junxue Zhang?
Mengyu Ma* Guyue Liv> Kai Chen!

1iSING Lab, Hong Kong University of Science and Technology

2University of Science and Technology of China

Abstract

Rack-scale CPU scheduling has emerged as a promising direc-
tion to accommodate the increasing demands for microsecond-
level services. However, prior work suffers from both in-
accurate load balancing in the network and complex yet
sub-optimal scheduling within each server due primarily to
its application-agnosticism. This paper presents Pallas, an
application-aware rack-scale CPU scheduling solution for
microsecond-level services with near-optimal performance.
At the heart of Pallas is an in-network workload shaping to
partition the workload into different shards, each of them pre-
serving high homogeneity regarding the CPU demands. With
the shaped workloads, Pallas then performs simple yet near-
optimal inter-server load balancing and intra-server schedul-
ing. We have fully implemented Pallas and our extensive ex-
periments across various synthetic workloads and real-world
applications demonstrate that Pallas significantly outperforms
the state-of-the-art solution RackSched by delivering stably
low tail latency and high throughput, reducing tail latency by
8.5x at medium load and as much as two orders of magnitude
at high load, while gracefully handling long-term workload
shifts and short-term transient bursts.

1 Introduction

Modern datacenters have deployed many user-facing applica-
tions for online services, such as key-value stores [9, 12, 13],
interactive data analytics [55], search ranking & sorting [16],
and function-as-a-service [19]. These services typically have
strict service level objectives (SLOs) that require the appli-
cations to provide high throughput with low tail latency in
the range of tens to hundreds of microseconds [15, 25]. To
serve the increasing application demands, rack-scale CPU
scheduling [53, 56, 85] have been proposed to scale beyond
a single server to multiple servers within a rack. For exam-
ple, as shown in Figure |a, previous solution RackSched [85]
leverages a programmable switch to perform inter-server load
balancing and utilizes existing dataplane operating system,
Shinjuku [45], for intra-server scheduling.

While RackSched enables cross-server scheduling, we find

JBitntelligence *Inspur > Peking University

that it fails to provide consistently low tail latency for diverse
workloads due to two key reasons. First, its Join-the-Shortest-
Queue (JSQ) based inter-server load balancing method oper-
ates in an application-agnostic manner. Without the knowl-
edge of the load each request generates at each server, it
may cause load imbalance between servers. Second, this
application-agnostic method also leads to assigning each
server a mix of long and short requests, leaving the challeng-
ing Head-of-line (HoL) blocking problem to each intra-server
scheduler. Unfortunately, our experiment in §2 shows that
existing intra-server scheduling algorithms cannot provide
near-optimal or even satisfactory low tail latency over hetero-
geneous workloads, resulting in ~50x slowdown compared
to the ideal.

This paper asks: Can we design a rack-scale scheduler for
microsecond-level services that can deliver consistently low
tail latency and high throughput over diverse workloads? To
answer this question, we present Pallas, a novel approach for
rack-scale CPU scheduling with near-optimal low tail latency
and high throughput.

To design Pallas, we make an important observation: while
it is challenging for each server to schedule mixed workloads,
it is easier to schedule a homogeneous workload with near-
optimal tail latency. Based on this observation, we propose to
resolve both load imbalancing and HoL problem at network
level through workload shaping. Our key idea is to proac-
tively transform mixed workloads into groups of uniform
ones, reducing the workload variance for servers. Then each
server only needs to handle a shaped and uniform workload,
which can be easily processed by simple scheduling algo-
rithms to achieve optimal tail latency. Realizing this idea
requires accurately estimating server load generated by each
request and network devices capable of categorizing requests
based on the estimation. Prior works have shown that existing
data center application characteristics [29] and programmable
switches [8] can achieve both requirements (§3). For instance,
the service types can be inferred from the packet headers in
key-value stores [9, 12] or in-memory databases [69, 75], and
the CPU demands can be monitored and correlated with the

USENIX Association

2025 USENIX Annual Technical Conference 179

service types.

We fully explore workload shaping, aided by the above
techniques, to design Pallas (Figure 1b), which decomposes
the rack-scale scheduling into three levels : i) workload-level
shaping runs at the ToR switch and partitions the entire work-
loads into different serving groups according to the estimated
request CPU execution duration, with the goal to preserve
group-level workload homogeneity; ii) group-level schedul-
ing that also runs at the ToR switch and dispatches requests
between servers within a group, ensuring equal load distribu-
tion among servers; and iii) server-level scheduling that runs
at each server and steers uniform requests to CPU workers
using the simple yet effective centralized First Come First
Serve (cFCFS) policy. These three scheduling levels work
in concert for Pallas to achieve the near-optimal tail latency
(explained in §3).

Specifically, to translate the above 3-level architecture into
a practical end-to-end system, Pallas addresses the following
three challenges raised by real application characteristics and
existing programmable switches:

* Generating an effective scheduling policy that balances
performance and server utilization (§4.3): The scheduling
policy, which decides how to divide workloads into groups,
significantly impacts the ultimate performance. The key
challenge lies in balancing workload homogeneity with
server utilization: more groups might improve tail latency
but lower server utilization, while fewer groups could opti-
mize resource usage but potentially compromise tail latency.
We address this challenge by designing a performance-
oriented methodology to generate policy candidates with a
tailored clustering algorithm and obtain the best performant
workload shaping policy via micro-benchmarks.

Handling workload change gracefully via request bouncing
(§4.4): As the workload shifts over time, a static scheduling
policy may become suboptimal. Simply replacing the pol-
icy is not sufficient and may result in temporal performance
degradation during the transition. To provide consistently
low tail latency, we dynamically adapt scheduling policies
to runtime workloads and propose a request bouncing mech-
anism to resolve the temporal HoL blocking during the
policy transition by prioritizing the precedence of short
requests over long requests.

Mitigating transient workload burst via request cloning
(§4.5): To mitigate temporal server overload caused by
bursty traffic, which happens in workload due to inherent
variances, and avoid performance degradation, we propose
a novel burst-aware request cloning which masks the tail
latency inflation by cloning the overloaded requests to the
under-utilized servers. Compared to the idea of traditional
cycle stealing often used to mitigate intra-server burst [29],
our approach offers a no-regret control and ensures the burst
handling does not result in worse tail latency.

We have implemented the fully functional Pallas (§5) with
commodity programmable switch, and evaluate it extensively

= =
Requests mm Requests g

|

Application-agnostic LB | |

P

= :""'""'""""\;:\""""E
Intra-server inj inj inj H |%| |%| i H
Scheduling cFCFS cFCFS cFCFS [cFcrs | [crcrs Jii[crors i
! 1 ;
; 3 ; V] [&) G

H
H 0 H

(a) Arch. of RackSched.

Inter-server
Scheduling
(ToR Switch)

Workload Shaping |
Il
Intra-group Load Balancing |

(b) Arch. of Pallas.

Figure 1: Rack-scale scheduling architectures: RackSched vs
Pallas.

using a combination of synthetic workloads and real applica-
tions. Our results demonstrate that Pallas significantly outper-
forms RackSched [85] in terms of stably lower tail latency
and higher throughput across various workloads (§6). For in-
stance, compared to RackSched, Pallas reduces the tail latency
by 8.5x and 5.5x in synthetic bimodal workload and real
workload application RocksDB [13] at medium load, respec-
tively. Besides, Pallas achieves 2.3 x higher throughput than
RackSched in the trimodal workload for the same tail latency
objective, and reduces the tail latency by two orders of magni-
tude at high load in RocksDB. In addition, we show that Pallas
can gracefully adapt to workload shifts and efficiently handle
microsecond-level workload bursts. Our experiments further
show that Pallas can preserve the performance superiority
over other related solutions [56, 76, 82] (§6.5).

Similar to existing literature [53, 56, 76, 82, 85], Pallas
focuses on stateless or replicated stateful services, including
microservices, stream processing and replicated caches and
storage. Supporting stateful services is beyond the scope of
this paper. Besides, Pallas expects that the workloads” CPU
demands can be statistically estimated based on historical
data (see more details at §7).

Comparison with prior work. Compared to the DARC
algorithm in Perséphone [29], which focus on intra-server
isolation through CPU core partitioning, Pallas operates at
rack scale, leveraging programmable switches to partition
heterogeneous workloads before they reach servers. This ar-
chitecture enables simplified and near-optimal scheduling
both across and within servers. To the best of our knowl-
edge, Pallas is the first to introduce application-aware work-
load shaping directly within the network switch, which dif-
fers from RackSched’s application-agnostic load balancing,
proactively preventing server-side HoL blocking rather than
merely reacting to it after the damage is done. Moreover,
while Pallas adopts request cloning to handle short-term work-
load bursts—a technique used by NetClone [53]—Pallas per-
forms this selectively, within already-shaped workload groups,
avoiding the excessive overhead of general-purpose cloning.

We open-source Pallas at https://github.com/HKUST
-SING/pallas.

180 2025 USENIX Annual Technical Conference

USENIX Association

https://github.com/HKUST-SING/pallas
https://github.com/HKUST-SING/pallas

RS-DARC RS-cFCFS
D Normalized Load -®- P99 Slowdown RS-TS RS-PS (Ideal)

°
o

- /\ H
© o
o
S e 38 B 1004
- " /== L10 i 2
@ 2 o
& 07T /o--o/ B3 v
T - = 10d
£ oo 9] i
5 059 3 o
i "
N

o)

1

0]

S1 S2 S3 S4 S5 S6 S7 S8

8

20) & 80
Percentage of Short Requests

(a) Inter-server load imbalance. (b) Intra-server HoL blocking.

Figure 2: Existing rack-scale scheduler is inefficient.

2 Rack-scale Scheduling and Status Quo

Serving ps-level services at the rack scale requires the sched-
uler to provide both low-tail latency to serve requests and
high throughput to utilize hundreds to thousands of cores
in the rack. Recent work RackSched [85] is the representa-
tive rack-scale ps-level scheduler. As shown in Figure Ia,
RackSched employs a two-level scheduling hierarchy: an
inter-server scheduler in the top-of-rack (ToR) switch and
an intra-server scheduler within each server. The inter-server
scheduler tracks real-time server loads and selects a server for
each request based on its current load. Then the intra-server
scheduler assigns the request to its workers, leveraging an ex-
isting intra-server scheduling mechanism like Shinjuku [45]
for high-dispersion workloads and centralized First-Come-
First-Serve (cFCFS) for low-dispersion workloads.

Despite being promising, we have identified two main is-
sues with RackSched that result in long tail latency: load
imbalance between servers and head-of-line blocking at each
Server.

Load imbalance between servers. RackSched employs a
Join-the-Shortest-Queue (JSQ)-based load balancing algo-
rithm, directing requests to servers based solely on their queue
lengths by having servers relay their load information to
the inter-server scheduler. This application-agnostic method,
lacking insight into the specific load each request imposes
on servers, can inadvertently cause load imbalances between
servers. This is particularly evident when different types of
requests demand varying server resources. For instance, in
Figure 1a, the first two servers have the same queue lengths.
However, they manifest distinct loads due to the variability in
the execution times of their respective requests.

Besides, it faces challenges in accurately capturing us-level
load dynamics. The inherent delay, approximately one RTT
(around 10ps), required to obtain queue length data means
that by the time the scheduler is updated, the server’s actual
load might have shifted. This results in the inter-server sched-
uler operating on potentially outdated and inaccurate load
information. To understand this problem experimentally, we
run RackSched to schedule requests among eight servers' and
report their normalized perceived load and 99% tail slowdown

IRefer to the high load case in §6.4.1 for the detailed experimental
setting.

in Figure 2a. We report the slowdown instead of latency as
it better reflects the impact of long requests on shorter ones.
The observation is that the load imbalance between servers
can lead to a significant discrepancy in tail slowdown (~3X).

Head-of-line blocking at each server. Given its application-
agnostic load balancing strategy, the RachSched inter-server
scheduler may distribute both long and short request types
to each server. As a result, each server needs to address the
challenges of head-of-line blocking, ensuring short requests
are not blocked by longer ones. Unfortunately, even advanced
intra-server schedulers [29, 45, 72] struggle to consistently
offer near-optimal tail latency across diverse workloads.

To demonstrate this issue, we evaluated RackSched’s per-
formance using a Bimodal workload (short=1ps,long=100us)
with varying short-to-long request ratios. We integrated
RackSched with four representative intra-sever scheduling
solutions: i) Centralized first-come-first-serve (cFCFS) from
ZygOS [72] and Shenango [68] which serves requests based
on their arriving order; ii) Time Sharing (TS) from Shin-
juku [45] which uses preemption to prioritize short requests
2+ iii) DARC from Perséphone [29] which reserves dedicated
cores for short requests; and iv) Processor Sharing (PS) which
is an ideal yet impractical one for comparison. We simulate it
with 0.1us preemption slice without any overhead. The sim-
ulation is based on ten servers, each equipped with twelve
cores. All schemes are executed under a 95% load to highlight
the performance discrepancy distinctly”.

Figure 2b presents the results, with RS-X denoting
RackSched combined with intra-server scheduling algorithm
X. We find that all practical algorithms (cFCFS, TS, DARC)
exhibit a notable performance gap compared to the ideal yet
impractical algorithm RS-PS when the workload has a mix
of short and long requests. This disparity becomes especially
evident when the proportion of short requests ranges between
10% and 90%. By analyzing these solutions, we can see that
cFCFS fails to address the HoL problem due to its inherent
scheduling approach, processing earlier arriving long requests
ahead of shorter ones. Despite TS and DARC using preemp-
tion or core reservation to mitigate the HoL. problem, they
also cannot fundamentally resolve it in practice and result in
long tail latency.

To summarize, current rack-scale scheduling employs
application-agnostic load balancing between servers, assign-
ing a mix of short and long requests to each server. This
approach essentially leaves the challenging HoL. blocking
problem to each intra-server scheduler, which unfortunately
cannot be optimally resolved by any of the existing solutions.

2RackSched uses Shinjuku (TS) with a 250us preemption time slice by
default. After adjustments, a SOus time slice yielded satisfactory results for
our setting. We simulate its context switching overhead as 1ps.

3Under light load, these schemes exhibit comparable performance, which
is consistent with the results presented in [45].

USENIX Association

2025 USENIX Annual Technical Conference 181

3 Key Idea: In-Network Workload Shaping

Despite it is hard to optimally schedule mixed workloads
within each server, we observed that it is easy to schedule
homogeneous workloads. As shown in Figure 2b, when the
proportion of short requests is 0% (purely long) or 100%
(purely short), the three scheduling solutions—RS-cFCFS
(theoretically optimal in these cases), RS-DARC, and RS-
TS—achieve tail latencies comparable to the ideal RS-PS.

This observation led us to a novel approach: in-network
workload shaping. By transforming mixed workloads into
groups of homogeneous workloads at the network level, we
can address the scheduling complexity within the network
rather than leaving it to each server. This allows each server
only needs to handle one type of request, either short or long,
making it easy to achieve optimal performance.

There are two opportunities that support realizing the in-
network shaping approach. i) As underscored by [29], cloud
applications have the capability to transparently display re-
quest types within message headers. For example, Mem-
cached [9] exposes request types at packet headers; Redis [12]
specifies commands with a serialization protocol; Remote Pro-
cedure Calls (RPCs) with protobuf [2] can define message
types. Notably, requests sharing the same type frequently
demonstrate analogous processing behaviors and hence sim-
ilar execution durations. Based on this observation, we can
monitor the execution patterns of each type of request, en-
abling estimations of request execution durations based on
these information. ii) Commodity datacenters are equipped
with programmable switches, which provide programmable
dataplane that can be leveraged to perform the workload es-
timation by extracting information from packet headers and
hence implement advanced scheduling algorithms based on
the estimated workload.

Our high-level architecture is shown Figure 1b. The pro-
grammable Top-of-Rack (ToR) switch stands central to this
design, proactively partitioning mixed workloads into groups
of uniform workloads based on their estimated running time.
Each designated subset of servers then focuses on a specific
workload group, with an intra-group load balancer ensuring
even load distribution between servers. Then at each server,
the intra-server scheduler handles requests using the simple
and optimal cFCFS algorithm.

This architecture can effectively address the two limitations
of existing rack-scale scheduling approaches to achieve near-
optimal performance. i) Accurate load balancing: Within a
given group, the actual load is proportional to the cumulative
request numbers, enabling a more precise load balancing be-
tween servers. ii) Eliminating HoL blocking: After workload
shaping, each server only needs to handle a specific type of
request. This significantly eliminates HoL blocking problem
for most servers. Only a few servers need to handle it when
the workload cannot be entirely partitioned. By mitigating the
HoL blocking, a simple cFCFS intra-server scheduler can be

used to achieve optimal tail latencies.

Why this is theoretically near optimal. The CPU schedul-
ing problem can be formalized as the classical M/G/X queu-
ing problem [52]. While it can be theoretically resolved
by JSQ/cFCFS and JSQ/PS for inter-server and intra-server
scheduling, respectively, our findings in §2 have revealed that
these approaches are impractical or inefficient for ps-level
latency. Fortunately, M/G/K can be decomposed into multiple
M/D/K’ subproblems, each exhibiting deterministic workload.
Wierman et al. [80] shows that FCFS is tail-optimal for deter-
ministically light-tailed workload within each server, while
round-robin is near-optimal for balancing the load between
servers within each M/D/K’ model. This convinces us that a
near-optimal framework can be achieved through in-network
workload shaping, which distributes homogeneous and deter-
ministic workload for each server.

4 Pallas Design

In this section, we first discuss the design challenges of Pallas,
then overview its workflow, and finally describe its design
details for addressing these challenges.

4.1 Design Challenges

Realizing the idea of in-network workload shaping into a prac-

tical system presents three outstanding technical challenges:

¢ How to generate an effective workload shaping policy?
Creating an effective scheduling policy requires i) accu-
rately estimating the workload, ii) partitioning the mixed
workload into groups based on estimated server loads, and
iii) mapping these groups to available servers. The key chal-
lenge lies in balancing workload homogeneity with server
utilization: more groups might improve tail latency but
lower server utilization, while fewer groups could optimize
resource usage but potentially compromise tail latency.

* How to gracefully handle long-term workload changes?
A scheduling policy may become suboptimal as the work-
load distribution shifts over time. Simply replacing the
scheduling policy to accommodate workload dynamics is
not sufficient and may result in temporal tail latency degra-
dation. For instance, new scheduling policy that transitions
servers from groups serving long requests to the groups for
short requests may incur HoL blocking.

¢ How to efficiently handle short-term transient bursts?
Pallas encounters limitations in capturing microsecond-
level dynamics due to the coarse-grained control granularity
of long-term workload changes handling, especially in the
face of transient partial workload surges due to its inherent
variances. As a result, it is imperative for Pallas to incorpo-
rate a mechanism to mitigate the impact of these transient
spikes.

4.2 Overview

Figure 3 shows the high-level workflow of Pallas. Pallas runs
the inter-server scheduler as the ToR switch and the intra-

182 2025 USENIX Annual Technical Conference

USENIX Association

DI _Q’ | Workload Shaper |

Requests
q L1 o Intra-server
Burst Intra-group | Scheduler

Handler Load Balancer
° Agent

kload kload
|

Responses ToR Switch Servers
Figure 3: Pallas overview.
Request Type Time(us)

GET(10) 12

RocksDB g0 ANG50000 650
Payment 5
OrderStatus 6

TPC-C NewOrder 16

Delivery 62

StockLevel 74

Table 1: Workload examples of RocksDB and TPC-C with
request types and corresponding execution times. GET(10)
and SCAN(5000) denote retrievals of 10 values and scanning
5000 keys-value pairs, respectively.

server scheduler at each server. Central to the key workload
shaper, Pallas composes two other components: intra-group
load balancer and intra-server scheduler. Each component im-
plements a portion of the scheduling policy, which is initially
generated offline (§4.3).

Workload Shaper. The workload shaper proactively trans-
forms mixed workloads into groups of homogeneous work-
loads at the ToR switch based on the request types shown in
the packets (step @). This stems from the observation that
the same type of requests have similar execution times on
servers. For example, Table | shows the execution times of
RocksDB and TPC-C workloads we profiled (details in §6.1),
which are also used in [29, 45]. Clearly, the GET(10) and
SCAN(5000) requests of RocksDB can be explicitly clus-
tered into two groups. On the other hand, TPC-C necessitates
a more nuanced grouping approach (e.g., NewOrder could
be its own group or merged with Payment and OrderStatus
requests).

Based on the well-shaped workloads, Pallas is able to per-
form simple yet near-optimal intra-group load balancing and
intra-server scheduling according to the initially generated
policies.

* Intra-group load balancer. After determining the group
for each workload request, the load balancer is responsible
for distributing the requests to servers within the group. To
minimize the impact of load imbalance between servers, it
leverages the weighted-round-robin (WRR) algorithm to
distribute request to each server based on their provisioned
computation capacity for the group (step @). WRR opti-
mally weighted-balances the perceived number of requests

[ETH| 1P| UDP |Type|Flag|index | Time| Payload |

\ | J
Y Y

Existing Protocols Pallas Header

Figure 4: Packet format of Pallas.

for servers within a group, aligning with their provisioned
computation capacity. We note that it is less practical for
the intra-group load balancer to directly determine the CPU
core for each request. The reason stems from the challenge
of accurately tracking the states of hundreds to thousands of
CPU cores within a rack at microsecond-scale [53, 85]. The
core state requires one RTT to update in the ToR switch,
which may introduce stale information and lead to ineffi-
cient scheduling decisions.

* Intra-server scheduler. After group-level load balanc-
ing, servers dispatch the well-shaped, load-balanced request
streams to different CPU cores with optimal scheduling pol-
icy. Specifically, they use the simple and optimal cFCFS
algorithm to serve the uniform workload. If the workload
cannot be fully partitioned, a few servers that are allocated
to handle multiple groups use the DARC algorithm [29].
Note that the workload monitoring and estimation in the
Pallas framework are conducted at ToR switch. Therefore,
the server employing the DARC algorithm is exempted
from redundant workload estimations.

Workload monitoring and change adaptation. To facil-
itate workload estimation, Pallas server embeds the actual
execution duration of each request in the header of its corre-
sponding response packet. The workload monitor extracts this
information and updates the dataplane record registers when
processing the response packets (step). The control plane
of the switch executes a workload adaptor to periodically
read information from workload monitor, craft the appropri-
ate scheduling policies (step @), and provision resources if it
deduces significant long-term workload shifts (§4.4). When
Pallas detects a bursty arrival of requests, the dataplane burst
handler implements a no-regret burst reaction mechanism
(step @) to mitigate the burst on time (§4.5).

Packet format. Figure 4 depicts the packet header format of
Pallas’s request and response. It consists of four major fields:
8-bit Type, 8-bit Flag, 32-bit Index and 32-bit Time, which
are used for request grouping in workload shaping, request
cloning in burst handling (§4.5), redundant replies filtering,
and actual execution time of request recording in workload
monitoring, respectively. Note that currently Pallas assumes
each request is contained in one packet. Supporting requests
with multiple packets is not the primary objective of this paper.
However, this can be realized by incorporating RackSched’s
request affinity mechanism [85] into Pallas, which is feasible
given Pallas’s low hardware footprint as shown in §5.

4.3 Scheduling Policy Generation

In this subsection, we first describe how Pallas generates
workload shaping policy, which is the core of Pallas to shape

USENIX Association

2025 USENIX Annual Technical Conference 183

uniform workload, and then elaborate how Pallas leverages it
to provision resources and formalize the scheduling policies.

Balancing homogeneity and server utilization. Pallas
should derive an effective request group mapping policy that
preserves high group-level workload homogeneity with high
system utilization. Drawing from the TPC-C workloads ex-
ample” (Table 1), we observe that request types such as Pay-
ment, OrderStatus, and NewOrder exhibit comparable CPU
demands. If one were to prioritize sheer request homogeneity,
these types should be allocated to disjoint serving groups.
However, such a configuration fragments system resources
and may inadvertently result in more system idling, induc-
ing system inefficiencies. Conversely, incorporating these
request types within a single serving group could compro-
mise group-level homogeneity, which may potentially result
in a discernible performance deviation from the optimal. In
summary, more groups improve homogeneity (potentially
lowering latency) but risk lower utilization; fewer groups im-
prove utilization but risk HoL blocking. Therefore, how to
find a group mapping policy that achieves high intra-group
homogeneity with high system efficiency remains a problem.
Since it is intractable to find the optimal policy analytically,
we resort to a performance-oriented greedy mechanism to
derive a solution inspired by [30]. This mechanism encom-
passes two primary stages: i) generation of group mapping
and ii) selection of candidates. We describe each stage below
by visualizing policy generation with TPC-C workload in
Figure 5.
Group mapping candidates generation (step @). We em-
ploy a clustering algorithm to generate several group map-
ping candidates. With the monitored workload information,
the algorithm derives group mapping policies by aggregating
similar request types considering both the monitored CPU
demands and their proportions across all requests with cus-
tomized k-means algorithm.

Optimal candidate selection (step))). Upon obtaining all
candidates from the preceding procedures, we aim to identify
a policy that optimizes tail latency without compromising
system utilization. To this end, we employ a performance-
oriented strategy to obtain the most appropriate group map-
ping policy, with the focus on an empirical metric, i.e., 99th
percentile latency, that matches our performance objective.
Specifically, we compare the group mapping policies through
offline simulations and evaluate their 99th percentile latencies.
Consequently, the policy with the best objective value is se-
lected (e.g., Final Mapping Table in Figure 5). We summarize
these two steps in Algorithm | in Appendix §A.

Resource provisioning (step @). Upon determining the
definitive request grouping policy, we compute the cumulative
CPU demands for each group and allocate the requisite CPU
resources to each serving group according to the reported

4We use the TPC-C workload to examplify a workload with n-modal
distribution.

computing capacity of each server (e.g., server indices
in Intra-group LB Policy Table). We denote r as a class of
requests with the same type, e.g., GET, E, as the average
execution time of r, ¢, as the ratio of » among all requests,
D, and D, as the CPU demand of r and serving group g,
respectively. We compute the CPU demand of each serving
group and allocate resources as follows:

D, = M
YiEi < ¢
D=L (1)
reg
Dy
=57 X Rotal;
ZgEG @g o

where G indicates total serving groups, K, denotes the CPU
resources allocated to serving group g, and Ry, represents
the total CPU resources provisioned to the application. It is
noteworthy that Pallas allocates resources at fine-grained core-
level. Hence, certain groups might be allocated with fractional
server numbers, for instance, 12 cores in 1.2 servers for group
0 in the example. In such scenarios, a few servers will cater to
multiple groups. To temper the scheduling intricacies through-
out the system, our resource provisioning strategy guarantees
that only a small number of servers serve multiple groups via
gathering them to the same servers as much as possible.

Scheduling policy generation (step @ and @). Upon final-
izing the request grouping policy and resource allocation for
each serving group, Pallas configures the policies in switch
and each server, thereby establishing the system’s request
scheduling policy. When serving groups occupy multiple
servers, the workload monitor formulates an intra-group load
balancing policy and updates the load balancing table with
weight values which correlate to the provisioned cores for
each server within that group (e.g., Round-Robin Weights
in Intra-group LB Policy Table). Concurrently, Pallas sends
the intra-server scheduling policies (e.g., Intra-server Sched.
Policy Table) to the agents located on each server. These trans-
mitted policies encapsulate the scheduling algorithms and the
relevant per-serving group CPU cores reservations, if any, es-
pecially in scenarios where a server accommodates multiple
serving groups. In this way, the intra-server scheduler is able
to conduct scheduling following the relayed scheduling policy
from the agent.

Workload variance handling. We note that Pallas is re-
silient to the execution time dispersion as found in real work-
loads via the use of Exponential Weighted Moving Average
(EWMA) for tracking execution times. EWMA inherently tol-
erates dispersion by capturing the central tendency, providing
a stable average for grouping decisions even with variance in
individual requests. As long as the EWMA-derived average
execution times between different types of requests are suffi-
ciently distinguishable, Pallas can effectively separate them
into appropriate groups. Furthermore, the policy generation

184 2025 USENIX Annual Technical Conference

USENIX Association

Mapping Tables

Type Group ID
O gt | ramen | o | S @
I—’OrderStatus 0 —‘
TPC-C Workload NewOrder 0 Final Mapping
Type Time|Ratio| Delivery 1 Type Group ID
Payment | 5 |43% Stocklevel | 1 Payment | 0
OrderStatus| 6 | 4% OrderStatus 0
NewOrder | 16 | 45% NewOrder 1
Delivery 62 | 4% Delivery 2
StockLevel | 74 | 4% StockLevel 2
Provision Resource & Generate Intra-server
° Generate Intra-group Scheduling Policy
Load Balancing Policy
Serving | Server | Round-Robin Server ID lnsér‘z‘-fez;r Reservation:
Group ID|Indices| Weights
0 01 110,2] [} cFCFS NIA
1 |1,234 (8,10,10,10] 1 DARC | &roup®:2
2 5,6,7 | [10,10,10] 2.7 CFCFS NA

Intra-group LB Policy Intra-server Sched. Policy

Figure 5: Example of generating a scheduling policy for the
TPC-C workload across eight servers, each equipped with 10
cores.

process itself evaluates grouping candidates based on overall
empirical performance evaluated by simulation. This process
selects groupings that perform well despite the expected level
of intra-group variance inherent in the EWMA-based assign-
ment.

4.4 Long-term Workload Change Adaptation

As workloads may vary over time, Pallas is tailored to ac-
commodate workload changes and recalibrate its generated
scheduling policies dynamically. It monitors real-time work-
load metrics in the switch control plane by accessing the state
registers within the switch dataplane.

Workload change detection. Leveraging the detailed per-
request metrics, i.e., average request execution time and total
number of requests within a monitor interval, Pallas workload
adaptor periodically assesses the new aggregated demand of
each serving group in comparison to its allocated CPU re-
sources. In particular, it examines the discrepancy between
the allocated CPU resources and the real-time demand as
inferred from the latest monitored workload data for each
serving group, with the resource allocation methodology in
§4.3. It then computes the cumulative demand discrepancy
across all serving groups as the resource provision process in
§4.3. If this discrepancy exceeds a predetermined threshold
d, Pallas activates a workload change reaction mechanism.
Currently, the workload adaptor works at a 10ms granular-
ity to capture relatively long-term workload changes. In our
evaluation, we set § to 10 and study its sensitivity in the Ap-
pendix §D.3.

Workload change reaction. In response to the detected work-
load changes, Pallas adapts its scheduling policies swiftly.
Specifically, Pallas re-invokes the workload estimation meth-
ods outlined in §4.3 to formulate new policies for both inter-
server and intra-server scheduling. Subsequent to this, the
related tables within the switch dataplane are updated. It is

Bounce long requests
for rescheduling

ToR : s {m]: {m}:

Switch

Incoming

CPU Workers
short request

Server

Figure 6: Pallas request bouncing.

worthy to highlight that, in order to temper potential disrup-
tions during the policy reconfiguration phase which makes the
system unstable and hence hurts the tail latency, Pallas adopts
an incremental update approach. This includes caching the
previously enforced scheduling policies in workload moni-
tor and determines their deviation from the newly devised
policies. Pallas then selectively updates only those segments
of the policy tables that should be changed, thereby curtail-
ing the reconfiguration duration. Additionally, Pallas restricts
the number of servers impacted by the reconfiguration, via
preserving the established roles of servers in relation to their
serving groups and making adjustments only when necessary.

Request bouncing. Pallas aims to eliminate HoL. block-
ing through in-network workload shaping. To accommodate
workload dynamics, Pallas periodically revises its scheduling
polices. This periodic adjustment leads to the reallocation of
end-host servers across various serving groups. Consequently,
during such reconfiguration phases, short requests within Pal-
las might experience temporary HoL blocking. This scenario
arises especially when new servers, which previously catered
to long requests, are allocated to serve short requests. As such,
the HoL dilemma can resurface during switch reconfiguration
phases. To address this, we introduce a novel request bouncing
mechanism, ensuring Pallas navigates reconfiguration phases
seamlessly. When a Pallas server receives new scheduling
decisions, such as serving groups from long requests to short
requests, we prioritize the processing of incoming short re-
quests, thereby proactively emptying existing queues of long
requests that might induce HoL blocking. To achieve this,
the Pallas server compares its current serving groups against
newly arriving ones. As shown in Figure 6, if the new request
should take precedence by exhibiting relatively shorter CPU
demands, Pallas purges the current queue, bouncing the re-
quests back to the switch for re-scheduling. This approach
stems from the rationale that the network transmission time
introduces less slowdown penalty on long requests, especially
when compared with the performance degradation by HoL
blocking that would impose on shorter requests.

4.5 Short-term Transient Burst Handling

Although workload estimation captures long-term workload
shifts, it faces challenges in handling sub-millisecond-level
transient surges [60], as it might make the system temporarily

USENIX Association

2025 USENIX Annual Technical Conference 185

|
o]

|

Clone D / E @

Drop
ToR Switch GroupB ToR Switch Group B
(a) Successful cloning. (b) Failed cloning.

Figure 7: Pallas request cloning. The yellow box represents
the request of group A. The red core and green core represent
the busy CPU and idle CPU, respectively.

overloaded and hence hurt tail latency. To remedy this, we
introduce a mechanism that detects bursts and an innovative
burst reaction method that mitigates such transient fluctua-
tions. We note that Pallas specifically tailors this mechanism
to manage bursts associated with particular request types or
serving groups, attributing to their inherent variances”.

Burst detection. Formally, we define a burst inspired by the
Heavy Change Detection mechanisms [74, 81]. Consider a
fixed time interval T, we denote the number of requests for
group g received by the switch during the one time interval
T, to be Cg;. Pallas stipulates that a burst occurs when the
real-time observed C,; exceeds a threshold Cyj,.s. Once a
burst is detected, Pallas enters the reaction mode to react to
the burst. The burst detection threshold C,,. represents the
upper limit of requests from group g that can be processed by
the entire allocated computational resources without inducing
queuing. Let N denote the number of group g’s requests a
single core can process within the T duration. The threshold
Cipres can be formulated as 2,~6RgN,-. The value of N; can
either be determined through offline profiling or dynamically
estimated by the agent resided within each server. To achieve
prompt burst detection, we set the time interval T at 20ps.
Why not server-level cycle stealing? While cycle steal-
ing [37] proves effective for handling burst within an indi-
vidual server in Perséphone [29], resulting from its ability
to determine that the stolen cores are idle, this effectiveness
diminishes at the rack-scale. The challenge emerges from
the difficulties of accurately determining a server’s idle state
at scale for microservices [53]. In this case, the request that
is redirected to other group servers via cycle stealing may
even deliver worse tail latency when the destination server
is busy. Consequently, we aim at a no-regret burst reaction
mechanism. It should ensure that the ultimate performance
never deteriorates compared to scenarios without any burst
reaction, a guarantee that cycle stealing cannot provide.

Burst reaction. Upon detecting a burst at the serving group

level in terms of request rates, Pallas employs a best-effort
request cloning technique to handle transient spikes. Pallas

5Addressing the burst happening on the entire workload level usually
requires techniques such as system overload control [20, 21] or resource
auto-scaling [48, 65], which is beyond the scope of this paper.

assumes that a burst typically does not occur across the en-
tire workload. Thus, when a specific serving group grapples
with a burst, other groups temporarily experience underuti-
lization. As a result, Pallas strategically clones [53] the in-
coming requests to idle groups for burst handling. The total
cloning number hinges on the burst’s intensity. Specifically,
once Pallas enters the clone mode, it clones requests from the
overloaded group to the underutilized ones, determining the
total number of requests to be cloned as Ccjpne = Cq r — Crpres.
When a request is selected for cloning, Pallas clones it and
then dispatches the original request to its serving group and
the cloned request to the group which exhibits the lowest
degree of burst (Figure 7a). The req.flag.clone of the
original request and the cloned one are set to 1 and 2, respec-
tively. To avoid the potential HoL blocking caused by cloning
long requests to short request groups, the server receiving the
cloned request (req.flag.clone = 2) will directly drop it
if it has no idle CPU cores (Figure 7b). To avoid redundant
processing of multiple responses for the cloned requests, Pal-
las’s switch dataplane filters out the slower responses with
the globally unique request ID (req. index). Besides, experi-
ments in §6.4.2 show that Pallas’s cloning does not sacrifice
sustainable throughput, as it only handles the bursty portion
of requests. The overall request scheduling procedures are
summarized in Algorithm 2 in Appendix §B for reference.

S Implementation

We have implemented a fully functional Pallas prototype, in-
cluding the inter-server scheduler in programmable switch,
intra-server schedulers and paired agents in each server and re-
quest clients. 1) The inter-server scheduler within switch data-
plane is written in P4 [18] and compiled to switch ASIC with
P4 Studio [4]. Pallas uses 2.8% SRAM and 10.4% Stateful
ALU:s of Tofino ASIC resources. Pallas dataplane composes
763 lines of P4 code. The control plane was implemented
with 1067 lines of python code, which uses the switch SDK to
read aggregated statistics from data plane registers and update
the policy tables if required. More details of dataplane imple-
mentation are presented in the Appendix §C. 2) The server
is built atop Perséphone [29]. We have extended Perséphone
to support the packet header and functionality of Pallas for
measuring request actual execution time, and encode this time
into Pallas responses for workload estimation. Besides, we
have implemented the agent to relay intra-server scheduling
policies, and request bouncing mechanism to protect system
performance during switch reconfiguration of policy tables.
3) The client is open-loop, implemented in C, and utilizes
DPDK for high-speed user-space networking. It can generate
Pallas requests at high rate and measure the throughput and
latency for each request accurately.

6 Evaluation

We evaluate Pallas to answer the following key questions:
¢ How does Pallas compare against state-of-the-art sys-

186 2025 USENIX Annual Technical Conference

USENIX Association

Synthetic Workloads Real World Applications
Bimodal Trimodal TPC-C RocksDB
Normal Port Normal Port
Type S L S L S M L P (0N NO D SL GET SCAN | GET SCAN
Time (us) 10 100 10 100 5 50 500 5 6 16 62 74 12 650 12 650
Ratio 90% 10% | 50% 50% | 33.3% 333% 333% | 43% 4% 45% 4% 4% | 90% 10% 50% 50%

Table 2: Workloads with dispersion. In Bimodal and Trimodal workloads, S, M, L represent short, medium, and long request,
respectively. In TPC-C workload, P, OS, NO, D, and SL represent Payment, OrderStatus, NewOrder, Delivery, and StockLevel,

respectively.

tems in static workloads? We show that Pallas achieves
near-optimal tail latency in statically synthetic workloads
(§6.2.1) and real-workload applications (§6.2.2), which
significantly outperforms RackSched. For example, Pal-
las reduces the tail latency by 8.5 and 5.5 x compared to
RackSched in the Bimodal distribution and RocksDB ex-
periments at medium load, respectively. Specifically, Pallas
reduces the tail latency by two orders of magnitude com-
pared to RackSched in the Port RocksDB experiment at
high load. We also show that Pallas delivers low tail la-
tency under light-tailed workloads (Appendix §D.1) and
outperforms other solutions (§6.5), including R2P2 [56],
Draconis [76] and Horus [82].

* How does Pallas respond to workload changes? We
demonstrate that Pallas can agilely respond to workload
changes and gracefully handle system reconfiguration
(§6.3), maintaining the stable tail latency in both synthetic
and real-world workloads.

* How effective is Pallas in terms of its components and
scalability? First, we show that workload shaping signif-
icantly helps load balancing and intra-server scheduling
(§6.4.1). Besides, we demonstrate that our request bounc-
ing (§6.4.2) and burst handling mechanisms (§6.4.3) can
both effectively mitigate the performance degradation under
workload dynamics. We also show that Pallas can almost
scale out linearly with more servers without compromising
performance in Appendix §D.2.

6.1 Experimental Setup

Testbed. The experiments are performed on a testbed of ten
machines connected by a Intel Tofino switch. Each machine is
equipped with two 12-core CPU (Intel Xeon(R) CPU E5-2630
v2, 2.60GHz), 64GB memory, and one NVIDIA ConnectX-
4 100G NIC. Each machine runs Ubuntu 18.04 with Linux
kernel 5.4.100. We use eight machines as servers to process
requests and two machines as clients to generate requests,
which is the similar setting in RackSched. Both clients and
servers runs DPDK 22.11.1 [5] for high-performance packet
processing. All servers use 10 worker threads running on
dedicated CPU cores. To improve system stability and reduce
jitter, we disable TurboBoost, C-states, and CPU frequency
scaling as recommended by [29, 68].

System compared. We compare the performance of Pallas
against RackSched [85]. We note that RackSched leverages

Shinjuku [45] as the default intra-server scheduler. However,
as Shinjuku only supports Intel NICs [45, 63, 85], we replace
it with Perséphone (DARC) within RackSched’s framework
for intra-server scheduling, since our motivation experiment
(Figure 2b) has shown that DARC delivers comparable per-
formance compared to TS (Shinjuku) for mixed workloads.
We have extended Perséphone to support RackSched packet
header and encode queue length in its response for JSQ-based
load balancing. For ease of reference in the subsequent exper-
iments, we name the system as RS-DARC or simply RS.

Workloads. We use a combination of synthetic and real
world application workloads to evaluate Pallas, following the
similar settings in recent works [29, 45, 72, 85]. By default,
both request and response contain one packet. In the context
of synthetic workloads, servers conduct the fake work by spin-
ning the CPU for the specified number of cycles. For the real
world application workloads, we harness RocksDB [13], an
in-memory key-value store, as the experimental platform. We
summarize the workloads in Table 2. Notably, we profile TPC-
C [11] transactions with silo [75], an in-memory database,
and evaluate it as a synthetic workload to showcase how Pal-
las performs on the n-modal workload. Additionally, we craft
dynamic workloads characterized by fluctuating request dis-
tributions. This setting aims to elucidate Pallas’s adaptive
capacities and response mechanisms when confronted with
variations in workload patterns. Note that Pallas targets state-
less or replicated stateful services. The profiled TPC-C trans-
actions are used primarily as a source of realistic, multi-modal
execution times for synthetic load generation to test shaping
effectiveness. In addition, the evaluation on RocksDB uses an
in-memory setup with read-only GET/SCAN requests.

Evaluated metrics. We adjust the request rates (request per
second (rps)) from the clients to modulate the system load,
and report the 99% tail latency, measured in microseconds,
corresponding to each specific rps adjustment.

6.2 Static Workloads
6.2.1 Synthetic Workloads

Figure 8 compares Pallas to RS-DARC for three service time
distributions. Note that the y-axis is log-scaled for good visi-
bility. Overall Pallas achieves significantly better tail latency
than RS-DARC. For example, as shown in Figure 8a, the tail
latency of RS-DARC starts to increase when system load
is above 1.5Mrps, and its tail latency reaches 1112us when

USENIX Association

2025 USENIX Annual Technical Conference 187

el RS-DARC e RS-DARC
Z1000] —o— Pallas > —o— Pallas
= c
[Q
® ®
- —
2 z
N 2
& 100 kS
05 10 15 20 02 04 06
Throughput (Mrps) Throughput (Mrps)
(a) Normal Bimodal (b) Port Bimodal
z RS-DARC e RS-DARC
> —o— Pallas < 6 Pallas
v 15
i= c
[Q
2 2
5 5
- -
it ic
2 S
o~ o
o o
25

0.5 1.0 15 20
Throughput (Mrps)

(d) TPC-C

0.10 0.15 0.20
Throughput (Mrps)
(c) Trimodal

Figure 8: Experimental results for synthetic workloads.

the load reaches 1.8Mrps, which is 5.2x higher than Pallas
(211ps) at the same load. In contrast, Pallas maintains a stably
low tail latency (~200us) before the load reaches 2.15Mrps.
In specific, Pallas reduces the latency by 16x when the sys-
tem load is 1.9Mrps. For the 250us tail latency objective,
Pallas achieves 1.5x higher throughput. The reason of Pal-
las’s significant performance improvement is twofold. First,
by employing the workload shaping, Pallas adeptly steers
short and long requests to different subsets of servers for
intra-group scheduling. Therefore, under this workload con-
figuration, seven servers exclusively process a singular type
of requests (either short or long), where the simple yet ef-
ficient cFCFS scheduler is utilized to achieve optimal tail
latency. This entirely addresses the HoL blocking problem.
Only one residual server works in the hybrid mode, accom-
modating both short and long requests. Second, the approach
to load balancing also undergoes refinement through work-
load shaping. In Pallas, intra-group scheduling only requires
a weighted balancing of request numbers among servers. This
mechanism demonstrates better load balancing than the queue-
length based solution adopted in RackSched.

Figure 8b depicts the results for a more challenging Port
Bimodal workloads, which represents the workloads char-
acterized by an even split between short and long requests.
We find that Pallas maintains a consistently low tail latency
until the system reaches its saturation point. In specific, Pal-
las reduces the tail latency by 8.5x compared to RS-DARC
at a load of 0.7Mrps. For the 300us tail latency objective,
Pallas achieves 1.4 x higher throughput. Figure 8c illustrates
the performance of Pallas under a trimodal workload. The
results show that Pallas delivers 2.0 x higher throughput than
RS-DARC when targeting a tail latency objective of 1200us.
Furthermore, at a system load of 0.18Mrps, Pallas manages
to reduce the tail latency by a factor of 2.3x compared to
RS-DARC.

Finally, we evaluate Pallas with the profiled TPC-C work-
load. In this context, the best performant grouping policy is:
the Payment and OrderStatus transactions are cohesive in one

e RS-DARC el RS-DARC
> —o— Palla; > —o— Pallas
e 2
2. 2
3 3 uyo’d
E [
N N
o -
o [-N
02 _ 04 06 08 10 010 05 0.20 0.25
Throughput (Mrps) Throughput (Mrps)
(a) Normal RocksDB (low) (b) Port RocksDB (high)

RS-DARC '

—o— Pallas }

000"

RS-DARC
—o— Pallas

S

& —o0—0—

99% Tail Latency (ps)
99% Tail Latency (ps)

0.2 0.25

0.10 0.15 0.20
Throughput (Mrps)

(d) SCAN Latency (high)

.10 015 020
Throughput (Mrps)

(c) GET Latency (high)
Figure 9: Experimental results for RocksDB.

group, the Delivery and StockLevel transactions form another
group, and the NewOrder transaction represents solely the
third group. The results are shown in Figure 8d. Notably,
when targeting a tail latency objective of 200us, Pallas de-
livers as much as 2.5Mrps high throughput, which is 1.7x
superior to that of RS-DARC.

6.2.2 Real Application: RocksDB

In this section, we showcase the performance gain of Pal-
las when applied to real-world applications RocksDB [13].
Adopting the configuration presented in [45, 85], we config-
ure the database to operate on an in-memory file (/tmpfs/) for
processing database transactions. Our evaluation incorporates
two distinct request types: the GET request, which retrieves
10 key-value pairs with a median service time of 12us, and the
SCAN request, designed to scan 5000 key-value pairs with
a median service time of 650us. Figure 9a shows the perfor-
mance under a workload mix of 90% GET and 10% SCAN
requests. We observe that Pallas adeptly handles system loads
up to 1Mrps without increasing tail latency.

Figure 9b presents the performance results for RocksDB
workloads with an equal mix (50-50) of GET and SCAN
requests. We find that Pallas maintains stable tail latency
until the system load reaches 0.21Mrps, achieving a 5.5x
latency reduction when compared to RS-DARC. Notably,
Pallas achieves as much as two orders of magnitude lower
latency at the 0.22Mrps and 0.23Mrps load. For a more gran-
ular analysis, we break down the results of GET and SCAN
requests under the port RocksDB workload, respectively, as
depicted in Figure 9c and Figure 9d. Owing to the application-
agnostic nature of inter-server scheduling in RS-DARC, each
server continues to handle heterogeneous workloads. This
necessitates the reservation of at least one CPU core for short
requests exclusively, resulting in an over-provisioning of GET
requests and an under-provisioning of SCAN requests. This
imbalance results in a rapid surge in the tail latency of SCAN
requests under RS-DARC as the system load escalates. In con-
trast, Pallas optimizes resource provisioning for each request

188 2025 USENIX Annual Technical Conference

USENIX Association

=3

1§_ Pallas w/o Reconfiguration Tn::_ Pallas w/o Reconfiguration
- —— Pallas - ——— "Pallas
2 g o,
g " [9]
2 2
© ©
3 3
2 12 e
2 A 2
o o
o o
] 4 A 8 10 & 3 10
Time (s) Time (s)
(a) Short requests (b) Long requests

Figure 10: Results on the changing synthetic workload.

®
&

w2 e : oy 3 3

= Pallasiw/o Reconfiguration 2 Pallas'w/o Reconfiguration

> 2. Palla: + + > Pallas

c c

915 i) zaoo—L’VL WAYWA

© © A A

=, - i |

& 3

I ©

o O o

X N

o A o 5

o T T ; o T T y
. 6 8 10 . 3 8 10

Time (s) Time (s)

(a) GET requests (b) SCAN requests

Figure 11: Results on the changing RocksDB workload.

type at rack-scale, yielding a far more efficient and effective
allocation. Consequently, Pallas significantly curtails the tail
latency of SCAN requests compared to RS-DARC, and yet
without compromising the tail latency performance of GET
requests.

6.3 Dynamic Workloads

Synthetic workloads. We initiate by dispatching requests
that follow the Port Bimodal (50%-10us, 50%-100us) distri-
bution to the system, subsequently transitioning the work-
load distribution to Normal Bimodal (90%-10us, 10%-100us).
Throughout this experiment, we maintain the system load
at approximately 80%. The results are shown in Figure 10,
where the shaded region signifies the period of new work-
load. The performances of long requests under these two
schemes remain relatively stable due to their decreasing re-
source demands (Figure 10b). For short requests, we observe
that Pallas without policies reconfiguration cannot adapt to
workload shifts and hence results in explicit tail latency in-
flation (Figure 10a). On the other hand, during this transition
phase, the Pallas workload estimator discerns the workload
pattern and promptly updates both the inter-server scheduling
policies and intra-server scheduling policies. Further, as the
workload changes, the proportion of short requests surges.
Consequently, there is a noticeable spike in the 99% tail la-
tency for Pallas’s short requests, which is attributed to system
reconfiguration and transient overloads. Nevertheless, the tem-
poral overload can be mitigated by the burst handling mecha-
nism, which takes effect before the control plane detects the
workload change by cloning increasing short requests to the
group for long requests to reduce its latency. Besides, our
dedicated request bouncing strategy reconciles this latency
elevation. These two mechanisms work in concert to ensure
that Pallas accommodates the changing workload gracefully.

RocksDB. We adopt a similar setting to assess Pallas’s

@ RS-DARC Long: ([Pallas Long

(@ RS-DARC Long: ([0 Pallas Long
154 RS-DARC Short Pallas Short
J

1531} \RS-DARC Short Dn\ Short

gilblolol o}y

S1 s2 s34 S5 s6 S S8 S1 sz s3_s4 S5 s6 S S8
Server Index Server Index

(b) Per-server load (high)

Norm. CPU Load
Norm. CPU Load

(a) Per-server load (low)

7 () ReBARE

. Pallas

153 (7) RS:DARC
1 . Pallas

99% Tail Slowdown

99% Tail Slowdown

ol il al
s1 S2 S3 sS4 S5 S6 S7 S8
Server Index

ol il
S1 S2 S3 sS4 S5 S6 S7 S8
Server Index

(c) Per-server Slowdown (low) (d) Per-server Slowdown (high)

Figure 12: Comparison of per-server perceived load and per-
formance between Pallas and RS-DARC.

performance on dynamic RocksDB workloads. The request
distribution transitions from Port RocksDB (50% GET, 50%
SCAN) to Normal RocksDB (90% GET, 10% SCAN). The re-
sults are depicted in Figure 11. We observe that Pallas swiftly
adapts to the workload changes, ensuring consistent tail la-
tency. Its counterpart of Pallas without workload adaptation
delivers a significant worse performance, as current schedul-
ing policies are largely inefficient for GET requests. During
the workload transition phase, there is also a slight surge.
However, the tail latency inflation is effectively bounded by
the mechanisms of burst handling and request bouncing.

6.4 Pallas Deep Dive
6.4.1 Effectiveness of Workload Shaper

To delve deeper into why Pallas significantly outperforms
RackSched in terms of tail latency, we analyze the perceived
request load and resultant performance slowdown for each
server during the experiments under Normal Bimodal work-
load in §6.2.1. This analysis is conducted at two distinct
system loads: 0.05Mrps (referred to as ’low’) and 1.8Mrps
(referred to as “high’).

In the low load scenario (first column), it is evident from
Figure 12a that both RackSched and Pallas manage to achieve
commendable inter-server load balancing. Consequently, their
overall slowdowns are comparable, as seen in Figure 12c.
However, when we examine RS-DARC at high load, a clear
disparity in server load balance emerges. As Figure 12b shows,
servers S1 and S2 in RS-DARC handle noticeably fewer re-
quests than their counterparts, while S5 is scheduled to handle
more requests. This imbalance is attributed to the application-
agnostic nature and outdated load information used by the
JSQ-based load balancer in RackSched, resulting in the di-
vergent slowdown performance. Additionally, each server in
RackSched continues to process a mixture of short and long
requests, necessitating the use of complex algorithm (DARC)
for ongoing workload monitoring and core allocation adjust-
ments for different type of requests. This dynamic adjustment,
however, still culminates in suboptimal performance. In con-

USENIX Association

2025 USENIX Annual Technical Conference 189

RS-DARC

w o Pallas w/o bouncing £
= — Pallas - = Pallas w/o BH
ol LI 9 —o— Pallas
c H <
] i 2 e
® H B 10
- H -
= =
e, e /
2 2
EN MM ooy o
o [[
450 495 500 5.05 510 16 17 18 19 20 21
Time (s) Throughput (Mrps)

(a) Request bouncing (b) Burst handling

Figure 13: Effectiveness of Pallas’s components.

trast, Pallas showcases impressive load balance across servers,
even at high load, as the results shown in Figure 12b. This
balance is achieved through in-network workload shaping and
nearly optimal intra-group scheduling. Consequently, servers
S2-S8 in Pallas exclusively handle a single request type, al-
lowing them to employ cFCFS to optimize tail latency and
slowdown. For instance, when examining server S5, we find
that Pallas reduces the slowdown by 7x compared to RS-
DARC, as highlighted in Figure 12d.

6.4.2 Request Bouncing

We offer a granular breakdown of the experiments under dy-
namic Bimodal workloads in §6.3, with results presented in
Figure 13a. We observe that the bouncing policy adeptly fa-
cilitates Pallas’s management of workload shifts, particularly
in curtailing the tail latency of short requests. For instance,
the fluctuations of tail latency for short requests in Pallas are
effectively tempered in comparison to the system without
bouncing mechanism.

6.4.3 Burst Reaction

To showcase the efficacy of Pallas’s burst handling mech-
anism, we evaluate it under a challenging bursty workload
comprised of 90% short requests of 10us and 10% long re-
quests of 90us. The arrival pattern for short requests adheres
to the bursty gamma distribution with a standard deviation of
5, whereas the long requests conform to a standard Poisson ar-
rival pattern. In this scenario, both short and long requests are
allocated to two distinct serving groups, with each group be-
ing provisioned with 4 servers, offering 40 cores cumulatively.
After profiling the maximum throughput under this configura-
tion, we configure the burst detection threshold Cyg, as 42
for the group of short requests. The tail latency under varying
system loads is illustrated in Figure 13b. Our results reveal
that both Pallas and its variant, i.e., with the Burst Handling
(BH) disabled, significantly outperform RS-DARC in terms of
reduced latency. Furthermore, Pallas reduces the tail latency
by an average factor of 6.1 x compared to its variant when
the load surpasses 1.9Mrps. This is because Pallas clones
the bursty short requests to the group for long ones, which
effectively masks the latency inflation and hence mitigates
the performance degradation of short requests.

2 R2P2 Draconis

2 RS-DARC =—0O— Pallas

c 1000 Horus

] i

5 1

— i

= 4

P 1004

\0 T TrryrrrrrTrTTT T T T T T T T T T T T T e e e T
EN 0.2 0.3 0.4 0.5 0.6 0.7 0.8
o Throughput (Mrps)

Figure 14: Comparison with other solutions.
6.5 Comparison with Other Solutions

Several other solutions aim to improve rack-scale schedul-
ing by leveraging in-network support. R2P2 [56] introduces
a join-bounded-shortest-queue (JBSQ) policy for dynami-
cally distributing requests across servers. Horus [82] enhances
scheduling accuracy by proactively monitoring server states
and loads via network switches. Draconis [76] is the latest pro-
posal for optimizing latency for us-level services, which im-
plements centralized first-come-first-served (cFCFS) schedul-
ing directly within the switches. Figure 14 compares Pallas
with them under a port bimodal workload. We find that Pallas
achieves superior performance, delivering lower tail latency
and greater sustainable throughput. The reason is that they
distribute mixed workloads to each server, where HoL block-
ing may still occur. However, Pallas eliminates it through its
efficient in-network workload shaping and thus delivers the
near-optimal performance.

7 Discussion

Target workloads and applications. Pallas can support
CPU-intensive stateless or replicated stateful services, which
is consistent with recent proposals [53, 56, 76, 82, 85]. Ex-
ample applications comprise in-memory databases, replicated
caches and storages, function-as-a-service and replicated in-
ference services for machine learning. Pallas currently does
not support stateful services, as it is less likely to replicate
them within a rack and scheduling may not be required. Pal-
las may be extended to support stateful applications by im-
plementing a sticky policy, similar to [56], which distributes
stateful operations to determined master nodes to maintain
consistency.

Workload practicality. Pallas assumes that the workloads
can expose statistical characteristic in terms of the CPU de-
mands, which is practical in many workloads [11, 14, 22].
This characteristic helps Pallas to generate effective work-
load shaping policies. As a result, Pallas’s performance gain
may diminish if the workloads are highly dynamic and un-
predictable. We acknowledge that it is Pallas’s limitation to
rely on the correlation between request types and execution
time, which is a simplified assumption. For more complex
workloads whose request execution time cannot be related to
their types alone, such as Lucene [1], we environ Pallas with a
more intelligent workload monitoring mechanism, e.g., using
a machine learning model, to estimate the request execution
time based on the necessary information at packet headers

190 2025 USENIX Annual Technical Conference

USENIX Association

exposed by the programmers.

Scaling to multiple racks. Currently, Pallas is designed
within a single rack, as a modern rack can already pro-
vide hundreds of cores and is expected to pack thousands
of cores [3, 7], which is sufficient for many services [85].
We further note that in-network workload shaping of Pallas
can naturally be extended to multiple racks or even the en-
tire datacenter in a hierarchical manner, e.g., leveraging both
core switches and ToR switches. Realizing this requires effi-
cient collaboration between core switches and ToR switches
to enforce a holistic workload shaping policy across racks.
Meanwhile, managing heterogeneous servers across racks and
handling more frequent workload changes and spikes may
also present challenges. We leave it as future work.

Optimization of intra-server scheduling. By design, the
majority of servers in Pallas are expected to employ the sim-
ple and efficient cFCFS scheduling algorithm. A natural en-
hancement would be to transition this scheduling algorithm
to hardware [6, 10, 63], which promises to curtail scheduling
overheads substantially and improve intra-server scalability.

Resource multiplexing and placement constraints. In the
context of CPU scheduling, Pallas’s workload shaping strat-
egy may not be efficient regarding the resource multiplexing
of other resources, e.g., memory and disks. Extending Pallas
to schedule microsecond-level services with multi-resource
multiplexing is an interesting future direction. Moreover, Pal-
las’s workload shaping strategy essentially implies the place-
ment constraints of requests. Therefore, system operators
and designers may utilize the outcome of Pallas’s workload
shaping to guide specific optimizations for different types of
requests [58, 79].

Deployment considerations. Pallas is incrementally de-
ployable. Its major components are implemented in the pro-
grammable switch, without requiring complex modifications
to end hosts, and may even simplify server-side designs. Pal-
las uses reserved UDP ports to trigger its logic, allowing it
to co-exist with other applications. Practical deployment of
Pallas requires access to programmable switches with suffi-
cient dataplane and control plane resources. As shown in the
implementation (§5), Pallas consumes modest hardware re-
sources, suggesting the feasibility on modern switch hardware.
Integrating Pallas into production environments may also re-
quire coordination with existing dataplane programs [33] and
control plane infrastructure, particularly to support multiple
concurrent applications. We leave it as future work.

8 Related work

Rack-scale scheduling for ps-level services. There exist
some solutions to optimize the tail latency for rack-scale ps-
level services [53, 56, 76, 82, 85]. However, all of them may
still suffer from the load imbalance and the HoL blocking
under workloads with highly diverse execution times. Pal-
las optimizes the tail latency through an entirely different

way: instead of scheduling requests, Pallas poses the concepts
of workload shaping and schedules the workload to each
server, which significantly reduces the complexities of both
load balancing and intra-server scheduling and improves the
scheduling quality. NetClone [53] employs general request
cloning as a primary mechanism for tail latency optimization.
Pallas utilizes cloning differently and more strategically: as
a conditional mechanism (§4.5) integrated within its shap-
ing framework, and triggered only for detected bursts within
specific and pre-shaped workload groups. This makes Pal-
las’s cloning a precise tool to maintain stability for already
optimized workloads and maintains resource efficiency.
Intra-server optimizations. Several intra-server designs
have been proposed to reduce latency and improve throughput
by introducing optimized network stacks [5, 24, 42, 49, 67],
designing dataplane operating systems [17, 23, 29, 31, 32, 39,
41, 45, 46, 50, 62, 66, 71, 72, 84] and performing hardware-
based optimizations [38, 40, 51, 63, 78]. For example, Persé-
phone [29] focus on mitigating HoL blocking within a single
server by isolating requests with different execution times to
separate CPU cores. These optimizations are orthogonal to
Pallas and can be integrated in it to further reduce latency and
improve throughput.

Job scheduling. There is a long line of research on the job
scheduling at cluster-level [26, 27, 28, 34, 35, 36, 47, 70, 77].
These systems target second-level jobs and therefore allow for
complex scheduling algorithms to achieve good performance.
However, Pallas is designed for microsecond-level services
which requires the scheduler to make simple and effective
scheduling decisions at line speed.

Programmable networks. Programmable switches enable
the network to perform more complex operations to improve
datacenter applications [43, 44, 54, 57, 59, 61, 64, 73, 83].
To the best of our knowledge, Pallas is the first to design
application-aware in-network scheduling for microsecond-
level services with significant performance improvements.

9 Conclusion

This paper presented Pallas, a new solution to schedule ps-
level services at rack-scale. Pallas leverages the core idea of
workload shaping by proactively transforming mixed work-
loads into uniform ones within the network and performs
simple yet near-optimal inter-server load balancing and intra-
server CPU scheduling. Our evaluation demonstrates that
Pallas significantly outperforms the state-of-the-art solution
in terms of both throughput and tail latency.

Acknowledgments

We thank our shepherd Gyuyeong Kim and anonymous ATC
reviewers for their constructive feedback. This work is sup-
ported in part by Hong Kong RGC TRS T41-603/20R, GRF
16213621, ITC ACCESS, NSFC 62402407, National Natu-
ral Science Fund for the Excellent Young Scientists Fund
Program (Overseas). Kai Chen is the corresponding author.

USENIX Association

2025 USENIX Annual Technical Conference 191

References

[1] Apache lucene. https://lucene.apache.org/co
re/2_9_4/queryparsersyntax.html.

[2] Google. protocol buffers - google’s data interchange for-
mat. https://github.com/protocolbuffers/pro
tobuf.

[3] Hp the machine. https://www.hpl.hp.com/resea
rch/systems-research/themachine/.

[4] Intel barefoot p4 studio. https://www.intel.com/
content/www/us/en/products/details/network
-io/intelligent-fabric-processors/pd-studi
o.html.

[5] Intel data plane development kit (dpdk). https://ww
w.dpdk.org/.

[6] Intel ethernet flow director. https://www.intel.
com/content /dam/www/public/us/en/documents
/white-papers/intel-ethernet-flow-director.
pdf.

[7] Intel rack scale design. https://www.intel.com/
content/www/us/en/architecture-and-technol
ogy/rack-scale-design-overview.html.

[8] Intel tofino series. https://www.intel.com/cont
ent/www/us/en/products/details/network-io/
intelligent-fabric-processors/tofino.html.

[9] Memcached key-value store.
org/.

https://memcached.

[10] Nvidia bluefield data processing units.
https://www.nvidia.com/en-us/networking
/products/data-processing-unit/.

[11] On-line transaction processing benchmark.
//www.tpc.org/tpcc/.

https:

[12] Redis: In-memory data store. https://redis.io/.
[13] Rocksdb. https://rocksdb.org/.

[14] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload analysis of a large-
scale key-value store. In Proceedings of the 12th ACM
SIGMETRICS/PERFORMANCE joint international con-
ference on Measurement and Modeling of Computer
Systems, pages 53—-64, 2012.

[15] Luiz Barroso, Mike Marty, David Patterson, and
Parthasarathy Ranganathan. Attack of the killer mi-
croseconds. Commun. ACM, 60(4):48-54, mar 2017.

[16] Luiz André Barroso, Jeffrey Dean, and Urs Holzle. Web
search for a planet: The google cluster architecture.
IEEE micro, 23(2):22-28, 2003.

[17] Adam Belay, George Prekas, Ana Klimovic, Samuel
Grossman, Christos Kozyrakis, and Edouard Bugnion.
IX: A protected dataplane operating system for high
throughput and low latency. In 11th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 14), pages 49-65, Broomfield, CO, October 2014.
USENIX Association.

[18] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick
McKeown, Jennifer Rexford, Cole Schlesinger, Dan
Talayco, Amin Vahdat, George Varghese, et al. P4:
Programming protocol-independent packet processors.
ACM SIGCOMM Computer Communication Review,
44(3):87-95, 2014.

[19] Sol Boucher, Anuj Kalia, David G Andersen, and
Michael Kaminsky. Putting the "micro" back in mi-
croservice. In 2018 USENIX Annual Technical Confer-
ence (USENIX ATC 18), pages 645-650, 2018.

[20] Inho Cho, Ahmed Saeed, Joshua Fried, Seo Jin Park,
Mohammad Alizadeh, and Adam Belay. Overload con-
trol for {us-scale}{RPCs} with breakwater. In /4h
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pages 299-314, 2020.

[21] Inho Cho, Ahmed Saeed, Seo Jin Park, Mohammad Al-
izadeh, and Adam Belay. Protego: Overload control
for applications with unpredictable lock contention. In
20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23), pages 725-738, Boston,
MA, April 2023. USENIX Association.

[22] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the st
ACM symposium on Cloud computing, pages 143-154,
2010.

[23] Alexandros Daglis, Mark Sutherland, and Babak Falsafi.
Rpcvalet: Ni-driven tail-aware balancing of us-scale
rpes. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 35-48, 2019.

[24] Michael Dalton, David Schultz, Jacob Adriaens, Ahsan
Arefin, Anshuman Gupta, Brian Fahs, Dima Rubinstein,
Enrique Cauich Zermeno, Erik Rubow, James Alexander
Docauer, et al. Andromeda: Performance, isolation, and
velocity at scale in cloud network virtualization. In /5th
USENIX symposium on networked systems design and
implementation (NSDI 18), pages 373-387, 2018.

[25] Jeffrey Dean and Luiz André Barroso. The tail at scale.
Commun. ACM, 56(2):74-80, feb 2013.

192 2025 USENIX Annual Technical Conference

USENIX Association

https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://github.com/protocolbuffers/protobuf.
https://github.com/protocolbuffers/protobuf.
https://www.hpl.hp.com/research/systems-research/themachine/
https://www.hpl.hp.com/research/systems-research/themachine/
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/p4-studio.html
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/p4-studio.html
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/p4-studio.html
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/p4-studio.html
https://www.dpdk.org/
https://www.dpdk.org/
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/tofino.html
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/tofino.html
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/tofino.html
https://memcached.org/
https://memcached.org/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.tpc.org/tpcc/
https://www.tpc.org/tpcc/
https://redis.io/
https://rocksdb.org/

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Pamela Delgado, Diego Didona, Florin Dinu, and Willy
Zwaenepoel. Job-aware scheduling in eagle: Divide and
stick to your probes. In Proceedings of the Seventh ACM
Symposium on Cloud Computing, pages 497-509, 2016.

Pamela Delgado, Diego Didona, Florin Dinu, and Willy
Zwaenepoel. Kairos: Preemptive data center scheduling
without runtime estimates. In Proceedings of the ACM
Symposium on Cloud Computing, pages 135-148, 2018.

Pamela Delgado, Florin Dinu, Anne-Marie Kermar-
rec, and Willy Zwaenepoel. Hawk: Hybrid datacenter
scheduling. In 2015 USENIX Annual Technical Confer-
ence (USENIX ATC 15), pages 499-510, 2015.

Henri Maxime Demoulin, Joshua Fried, Isaac Pedisich,
Marios Kogias, Boon Thau Loo, Linh Thi Xuan Phan,
and Irene Zhang. When idling is ideal: Optimizing
tail-latency for heavy-tailed datacenter workloads with
perséphone. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, SOSP 21,
page 621-637, New York, NY, USA, 2021. Association
for Computing Machinery.

Mo Dong, Qingxi Li, Doron Zarchy, P Brighten God-
frey, and Michael Schapira. {PCC}: Re-architecting
congestion control for consistent high performance. In
12th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 15), pages 395-408, 2015.

Dawson R Engler, M Frans Kaashoek, and James
O’Toole Jr. Exokernel: An operating system architec-
ture for application-level resource management. ACM
SIGOPS Operating Systems Review, 29(5):251-266,
1995.

Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and
Adam Belay. Caladan: Mitigating interference at mi-
crosecond timescales. In /4th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), pages 281-297, 2020.

Jiaqi Gao, Jiamin Cao, Yifan Li, Mengqi Liu, Ming Tang,
Dennis Cai, and Ennan Zhai. Sirius: Composing net-
work function chains into P4-Capable edge gateways. In
21st USENIX Symposium on Networked Systems Design
and Implementation (NSDI 24), pages 477-490, Santa
Clara, CA, April 2024. USENIX Association.

Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy
Konwinski, Scott Shenker, and Ion Stoica. Dominant
resource fairness: Fair allocation of multiple resource
types. In 8th USENIX symposium on networked systems
design and implementation (NSDI 11), 2011.

Ionel Gog, Malte Schwarzkopf, Adam Gleave,
Robert NM Watson, and Steven Hand. Firmament:

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

Fast, centralized cluster scheduling at scale. In /2th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 99-115, 2016.

Robert Grandl, Mosharaf Chowdhury, Aditya Akella,
and Ganesh Ananthanarayanan. Altruistic scheduling in
{Multi-Resource} clusters. In 12th USENIX symposium
on operating systems design and implementation (OSDI
16), pages 65-80, 2016.

Mor Harchol-Balter, Cuihong Li, Takayuki Osogami,
Alan Scheller-Wolf, and Mark S Squillante. Cycle steal-
ing under immediate dispatch task assignment. In Pro-
ceedings of the fifteenth annual ACM symposium on
Parallel algorithms and architectures, pages 274-285,
2003.

Jack Tigar Humphries, Kostis Kaffes, David Mazieres,
and Christos Kozyrakis. Mind the gap: A case for in-
formed request scheduling at the nic. In Proceedings
of the 18th ACM Workshop on Hot Topics in Networks,
pages 60-68, 2019.

Jack Tigar Humphries, Neel Natu, Ashwin Chaugule,
Ofir Weisse, Barret Rhoden, Josh Don, Luigi Rizzo, Oleg
Rombakh, Paul Turner, and Christos Kozyrakis. ghost:
Fast & flexible user-space delegation of linux schedul-
ing. In Proceedings of the ACM SIGOPS 28th Sympo-
sium on Operating Systems Principles, pages 588—604,
2021.

Stephen Ibanez, Alex Mallery, Serhat Arslan, Theo
Jepsen, Muhammad Shahbaz, Changhoon Kim, and
Nick McKeown. The nanopu: A nanosecond net-
work stack for datacenters. In 15th {USENIX} Sympo-
sium on Operating Systems Design and Implementation
({OSDI} 21), pages 239-256, 2021.

Rishabh Iyer, Musa Unal, Marios Kogias, and George
Candea. Achieving microsecond-scale tail latency ef-
ficiently with approximate optimal scheduling. In Pro-
ceedings of the 29th Symposium on Operating Systems
Principles, SOSP 23, New York, NY, USA, 2023. As-
sociation for Computing Machinery.

Eun Young Jeong, Shinae Woo, Muhammad Jamshed,
Haewon Jeong, Sunghwan IThm, Dongsu Han, and Ky-
oungSoo Park. mtcp: A highly scalable user-level tcp
stack for multicore systems. In Proceedings of the 11th
USENIX Conference on Networked Systems Design and
Implementation, NSDI’ 14, page 489-502, USA, 2014.
USENIX Association.

Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster,
Jeongkeun Lee, Robert Soulé, Changhoon Kim, and
Ton Stoica. {NetChain}:{Scale-Free}{Sub-RTT} co-
ordination. In 15th USENIX Symposium on Networked

USENIX Association

2025 USENIX Annual Technical Conference 193

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Systems Design and Implementation (NSDI 18), pages
35-49, 2018.

Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,
Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion
Stoica. Netcache: Balancing key-value stores with fast
in-network caching. In Proceedings of the 26th Sympo-
sium on Operating Systems Principles, pages 121-136,
2017.

Kostis Kaffes, Timothy Chong, Jack Tigar Humphries,
Adam Belay, David Mazieres, and Christos Kozyrakis.
Shinjuku: Preemptive scheduling for usecond-scale tail
latency. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), pages
345-360, Boston, MA, February 2019. USENIX Asso-
ciation.

Kostis Kaffes, Jack Tigar Humphries, David Mazieres,
and Christos Kozyrakis. Syrup: User-defined scheduling
across the stack. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles, pages
605-620, 2021.

Kostis Kaffes, Neeraja J Yadwadkar, and Christos
Kozyrakis. Centralized core-granular scheduling for
serverless functions. In Proceedings of the ACM sympo-
sium on cloud computing, pages 158-164, 2019.

Vasiliki Kalavri, John Liagouris, Moritz Hoffmann,
Desislava Dimitrova, Matthew Forshaw, and Timothy
Roscoe. Three steps is all you need: fast, accurate,
automatic scaling decisions for distributed streaming
dataflows. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages
783-798, 2018.

Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter {RPCs} can be general and fast. In /6th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), pages 1-16, 2019.

Rishi Kapoor, George Porter, Malveeka Tewari, Geof-
frey M Voelker, and Amin Vahdat. Chronos: Predictable
low latency for data center applications. In Proceed-
ings of the Third ACM Symposium on Cloud Computing,
pages 1-14, 2012.

Antoine Kaufmann, SImon Peter, Naveen Kr Sharma,
Thomas Anderson, and Arvind Krishnamurthy. High
performance packet processing with flexnic. In Proceed-
ings of the Twenty-First International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 67-81, 2016.

David G Kendall. Stochastic processes occurring in the
theory of queues and their analysis by the method of the

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

imbedded markov chain. The Annals of Mathematical
Statistics, pages 338-354, 1953.

Gyuyeong Kim. Netclone: Fast, scalable, and dynamic
request cloning for microsecond-scale rpcs. In Proceed-
ings of the ACM SIGCOMM 2023 Conference, pages
195-207. Association for Computing Machinery, 2023.

Gyuyeong Kim. Pushing the limits of In-Network
caching for Key-Value stores. In 22nd USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 25), pages 1155-1168, Philadelphia, PA, April
2025. USENIX Association.

Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh
Trivedi, Jonas Pfefferle, and Christos Kozyrakis. Pocket:
Elastic ephemeral storage for serverless analytics. In
13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), pages 427-444, 2018.

Marios Kogias, George Prekas, Adrien Ghosn, Jonas
Fietz, and Edouard Bugnion. {R2P2}: Making {RPCs}
first-class datacenter citizens. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19), pages 863—
880, 2019.

ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi
Chen, Wenfei Wu, Aditya Akella, and Michael Swift.
{ATP}: In-network aggregation for multi-tenant learn-
ing. In 18th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 21), pages 741-761,
2021.

Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu,
Yonggiang Xiong, Andrew Putnam, Enhong Chen, and
Lintao Zhang. Kv-direct: High-performance in-memory
key-value store with programmable nic. In Proceedings
of the 26th Symposium on Operating Systems Principles,
pages 137-152, 2017.

Jialin Li, Ellis Michael, and Dan RK Ports. Eris:
Coordination-free consistent transactions using in-
network concurrency control. In Proceedings of the

26th Symposium on Operating Systems Principles, pages
104-120, 2017.

Jialin Li, Naveen Kr Sharma, Dan RK Ports, and
Steven D Gribble. Tales of the tail: Hardware, os, and
application-level sources of tail latency. In Proceedings
of the ACM Symposium on Cloud Computing, pages
1-14, 2014.

Xiaozhou Li, Raghav Sethi, Michael Kaminsky, David G
Andersen, and Michael J Freedman. Be fast, cheap and
in control with {SwitchKV}. In 13th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 16), pages 31-44, 2016.

194

2025 USENIX Annual Technical Conference

USENIX Association

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Yueying Li, Nikita Lazarev, David Koufaty, Tenny Yin,
Andy Anderson, Zhiru Zhang, G Edward Suh, Kostis
Kaffes, and Christina Delimitrou. Libpreemptible: En-
abling fast, adaptive, and hardware-assisted user-space
scheduling. In 2024 IEEE International Symposium
on High-Performance Computer Architecture (HPCA),
pages 922-936. IEEE, 2024.

Jiaxin Lin, Adney Cardoza, Tarannum Khan, Yeonju Ro,
Brent E Stephens, Hassan Wassel, and Aditya Akella.
{RingLeader}: Efficiently offloading {Intra-Server} or-
chestration to {NICs}. In 20th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
23), pages 1293-1308, 2023.

Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li,
Changhoon Kim, Vladimir Braverman, Xin Jin, and
Ton Stoica. {DistCache}: Provable load balancing for
{Large-Scale} storage systems with distributed caching.
In 17th USENIX Conference on File and Storage Tech-
nologies (FAST 19), pages 143-157, 2019.

Tania Lorido-Botran, Jose Miguel-Alonso, and Jose A
Lozano. A review of auto-scaling techniques for elastic
applications in cloud environments. Journal of grid
computing, 12:559-592, 2014.

Zhihong Luo, Sam Son, Dev Bali, Emmanuel Amaro,
Amy Ousterhout, Sylvia Ratnasamy, and Scott Shenker.
Efficient microsecond-scale blind scheduling with tiny
quanta. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, ASPLOS
24, New York, NY, USA, 2024. Association for Com-
puting Machinery.

Ilias Marinos, Robert NM Watson, and Mark Hand-
ley. Network stack specialization for performance.
ACM SIGCOMM Computer Communication Review,
44(4):175-186, 2014.

Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam
Belay, and Hari Balakrishnan. Shenango: Achieving
high CPU efficiency for latency-sensitive datacenter
workloads. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), pages
361-378, Boston, MA, February 2019. USENIX Asso-
ciation.

John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita
Kejriwal, Collin Lee, Behnam Montazeri, Diego Ongaro,
Seo Jin Park, Henry Qin, Mendel Rosenblum, Stephen
Rumble, Ryan Stutsman, and Stephen Yang. The ram-
cloud storage system. ACM Trans. Comput. Syst., 33(3),
aug 2015.

[70]

[71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu,
and Chuanxiong Guo. Optimus: an efficient dynamic
resource scheduler for deep learning clusters. In Pro-
ceedings of the Thirteenth EuroSys Conference, pages
1-14, 2018.

Simon Peter, Jialin Li, Irene Zhang, Dan RK Ports, Doug
Woos, Arvind Krishnamurthy, Thomas Anderson, and
Timothy Roscoe. Arrakis: The operating system is the
control plane. ACM Transactions on Computer Systems
(TOCS), 33(4):1-30, 2015.

George Prekas, Marios Kogias, and Edouard Bugnion.
Zygos: Achieving low tail latency for microsecond-scale
networked tasks. In Proceedings of the 26th Sympo-
sium on Operating Systems Principles, SOSP *17, page
325-341, New York, NY, USA, 2017. Association for
Computing Machinery.

Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob
Nelson, Panos Kalnis, Changhoon Kim, Arvind Kr-
ishnamurthy, Masoud Moshref, Dan Ports, and Peter
Richtarik. Scaling distributed machine learning with In-
Network aggregation. In 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
21), pages 785-808. USENIX Association, April 2021.

Robert Schweller, Ashish Gupta, Elliot Parsons, and Yan
Chen. Reversible sketches for efficient and accurate
change detection over network data streams. In Proceed-
ings of the 4th ACM SIGCOMM conference on Internet
measurement, pages 207-212, 2004.

Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara
Liskov, and Samuel Madden. Speedy transactions in
multicore in-memory databases. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 18-32, 2013.

Sreeharsha Udayashankar, Ashraf Abdel-Hadi, Ali
Mashtizadeh, and Samer Al-Kiswany. Draconis:
Network-accelerated scheduling for microsecond-scale
workloads. In Proceedings of the Nineteenth European
Conference on Computer Systems, EuroSys ’24, page
333-348, New York, NY, USA, 2024. Association for
Computing Machinery.

Abhishek Verma, Luis Pedrosa, Madhukar Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
scale cluster management at google with borg. In Pro-
ceedings of the tenth european conference on computer
systems, pages 1-17, 2015.

Zilong Wang, Layong Luo, Qingsong Ning, Chaoliang
Zeng, Wenxue Li, Xinchen Wan, Peng Xie, Tao Feng,
Ke Cheng, Xiongfei Geng, et al. {SRNIC}: A scalable
architecture for {RDMA}{NICs}. In 20th USENIX

USENIX Association

2025 USENIX Annual Technical Conference 195

Symposium on Networked Systems Design and Imple-
mentation (NSDI 23), pages 1-14, 2023.

[79] Xingda Wei, Rongxin Cheng, Yuhan Yang, Rong Chen,
and Haibo Chen. Characterizing off-path SmartNIC
for accelerating distributed systems. In /7th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 23), pages 987-1004, Boston, MA,
July 2023. USENIX Association.

[80] Adam Wierman and Bert Zwart. Is tail-optimal schedul-
ing possible? Operations research, 60(5):1249-1257,
2012.

[81] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi
Gong, Yang Zhou, Rui Miao, Xiaoming Li, and Steve
Uhlig. Elastic sketch: Adaptive and fast network-wide
measurements. In Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communi-
cation, pages 561-575, 2018.

[82] Parham Yassini, Khaled Diab, Saeed Mahloujifar, and
Mohamed Hefeeda. Horus: Granular In-Network task
scheduler for cloud datacenters. In 27st USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 24), pages 1-22, Santa Clara, CA, April 2024.
USENIX Association.

[83] Zhuolong Yu, Yiwen Zhang, Vladimir Braverman,
Mosharaf Chowdhury, and Xin Jin. Netlock: Fast, cen-
tralized lock management using programmable switches.
In Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols
for computer communication, pages 126—138, 2020.

[84] Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk
Olynyk, Jacob Nelson, Omar S Navarro Leija, Ash-
lie Martinez, Jing Liu, Anna Kornfeld Simpson, Sujay
Jayakar, et al. The demikernel datapath os architecture
for microsecond-scale datacenter systems. In Proceed-
ings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles, pages 195-211, 2021.

[85] Hang Zhu, Kostis Kaffes, Zixu Chen, Zhenming Liu,
Christos Kozyrakis, Ion Stoica, and Xin Jin. RackSched:
A Microsecond-Scale scheduler for Rack-Scale comput-
ers. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20), pages 1225—
1240. USENIX Association, November 2020.

Algorithm 1: GenerateMapping(requests)

1 latencies <— empty list
2 mappings < empty list
/* Find most possible mappings based on
total request types. */

3 for k < 1 to type(requests) do
4 model + KMeans(k)
5 mappings[k] = model.fit(requests)
/* Obtain the optimal mapping via

micro-benchmarking. */
for mapping in mappings do
latency <— micro-benchmark(mapping)
latencies.append(latency)
opt_mapping ¢— argmin
0 return opt_mapping

6
7
8
9 memappings{latenaes}

—

Appendix

A Algorithm of Workload Mapping Genera-
tion

We summarize the algorithm for generating Pallas workload
shaping policy in Algorithm 1. It consists of two stages. First,
Pallas generates several group mapping candidates with a
tailored k-means algorithm (Lines 3-5). Then, Pallas deter-
mines the best performant mapping policy through offline
simulations (Lines 6-8).

B Overall Request Scheduling

We summarize the scheduling workflow in Algorithm 2. Ini-
tially, Pallas identifies the serving group corresponding to
each request (Line 4), and ascertains whether the group has
encountered a burst (Line 5). Upon detecting a burst, Pallas
clones the request and recalibrate it with a proper serving
group ID (Lines 6-12). Pallas then sends the request to a
server within the determined serving group, ensuring load
balancing (Line 13). Once the server receives the request, it
leverages its intra-server scheduling algorithm to allocate the
request to a CPU core (Lines 16-20). In the concluding step,
the server generates a response and sends it back to the client.

C Switch Dataplane Implementation

Weighted round-robin. Pallas employs a weighted round-
robin (WRR) algorithm for the intra-group scheduling. In this
approach, Pallas assigns a unique counter for each group to
determine the destination servers for incoming requests. This
counter is incremented sequentially with each request and is
programmed to reset to zero upon reaching the aggregate limit,
defined by the WRR parameters of the group. The request
finds its destination by aligning the counter’s current value
with the predetermined weight range of servers. The counter
is implemented with the register in P4, and updated with the
ALU operation.

196 2025 USENIX Annual Technical Conference

USENIX Association

Algorithm 2: Pallas Request Scheduling

1 Event: On request arrival at switch:
2 Init the metadata (meta) for each request
3 if req.flag.clone = 0 then

4 meta.group <— GroupMapping(req.type)
5 burst <— BurstDetection(meta.group)
6 if burst = True then
7 Event: On burst detected:
8 cloned_req, cloned_meta <—
CloneRequests(req, meta)
9 req.flag.clone < 1
10 cloned_req.flag.clone < 2
/* Assign group for the cloned
request */
11 cloned_meta.group <— FindCloneGroup(req)
12 resubmit(cloned_req, cloned_meta)

13 server <— WeightedRoundRobin(meta.group)
14 send(req, server)

15 Event: On request arrival at server:
16 if server.policy = cFCFS then

17 | FCFSSchedule(req)

18 else

19 cores ¢ core_reservation(req)

20 DARCSchedule(req, cores)

21 send_response(req)

4 2000 RS-DARC
> —0— Pallas

c 1000

(V)

I]

m 4

— 500

S

N 1. © o O
& 200

o~

05 10 15
Throughput (Mrps)

Figure 15: Exponential

Workload recording. Pallas records the workload informa-
tion of each type of request with two registers in P4. The first
register is tasked with recording the cumulative count of mon-
itored requests, while the second is dedicated to computing
the Exponentially Weighted Moving Average (EWMA) of the
execution times of these requests. The EWMA factor is set
to 0.125 in our current prototype, which helps compute the
division by bit-shifting operations in P4. The register respon-
sible for counting request numbers is programmed to reset
periodically by the regular workload monitoring schedule.

m -
= RS-DARC(?) RS-DARC(#)' RS-DARC(8)
ey O Pallas(2)i : O Pallas(4) | <O Pallas(8)
21000+ 2 ; !
3 3 H §
© H
- o !
°
32 1004
& 5 05 _ 10 15 20
' Throughput (Mrps))
Figure 16: Scalability results of Pallas.
)
qC) —0— RocksDB
s ==0-- Bimodal
—
e
2
o
o
€
—
(o]]
Z = LA L A R) SO B L B I R R S
0

5 10 15
Reallocation Threshold

Figure 17: Sensitivity analysis of the reallocation threshold 3.
D Supplementary Experiments

D.1 Performance under Light-tailed Workload

Figure 15 compares Pallas and RackSched under a light-tailed
exponential workload with an average request execution time
of 25us. As suggested in RackSched paper, its intra-server
scheduler is configured to use cFCFS. We find that RackSched
exhibits very close performance to Pallas. This is attributed
to the uniformity of request execution times characteristic
of the exponential workload. Consequently, both JSQ and
Pallas’s intra-group load balancer can effectively distribute the
load across servers, in which the optimal intra-server cFCFS
scheduling is utilized.

D.2 Scalability

We show the scalability of Pallas with two, four and eight
servers. We use the Bimodal workload comprised of 90%
short requests of 10us and 10% long requests of 90us. Fig-
ure 16 shows the results of 99% tail latency. We observe that
the sustainable throughput of Pallas almost scales linearly
with the number of servers, exhibiting much better scalability
than RS-DARC. This is because RackSched’s application-
agnostic inter-server load balancing incurs more variability
when facing high request rates and hence results in load im-
balance and degrades tail latency. The linear scalability of
Pallas can attribute to the near-optimal load balancing and
intra-server scheduling with in-network workload shaping,
demonstrating that Pallas is able to scale out with more servers
without compromising performance.

USENIX Association

2025 USENIX Annual Technical Conference 197

104 % Monitoring
8; @ Monitoring + Refining
wv |
E ¢
g]
=
2,
0

Figure 18: Monitoring overhead of Pallas.
D.3 Parameter Sensitivity

Sensitivity to realloaction threshold. We vary the realloca-
tion threshold & from 1 to 20 and investigate the performance
of Pallas with different thresholds. We use both the synthetic
workload in Figure 10 and real application RocksDB in Fig-
ure 11 to evaluate the sensitivity of Pallas to the reallocation
threshold. Figure 17 shows the overall normalized 99% tail
latency.

From our observations, Pallas exhibits relative insensitivity
to the reallocation threshold within the range of 5-15. This can
be attributed to the fact that this threshold range effectively
captures workload fluctuations while simultaneously ensuring
system stability by avoiding excessive resource reallocations
and switch reconfigurations. Specifically, in the context of the
synthetically changing bimodal workload, a threshold set at 1
renders the system over-responsive to minor workload vari-
ations, thereby substantially impairing system performance.
On the other hand, in the scenario of the varying RocksDB
workload, a threshold of 20 makes the system oblivious to
workload shifts, consequently deteriorating the tail latency.

D.4 Monitoring Overhead

We evaluate the overhead introduced by workload monitoring
in Pallas’s switch control plane. Figure 18 reports the execu-
tion time of two key control plane operations: periodic register
reading (workload monitoring only) and infrequent register
updates (monitoring together with refining) upon workload
shift. Results show that both operations is lightweight relative
to the 10 ms monitoring interval, confirming the practicality
of our design. We also note that the 10 ms interval targets
long-term workload changes and represents a configurable
trade-off. If needed, Pallas can scale to support more workload
groups by operating at longer monitoring intervals.

D.5 Impact of Workload Monitoring

We further examine the impact of workload monitoring un-
der static workloads. Specifically, we evaluate three static
workloads at their respective maximum sustainable request
rates in Pallas. As shown in Figure 19, enabling monitoring
has no observable effect on system performance, since policy
updates are not triggered when no workload shift is detected.
This confirms that the monitoring logic is lightweight and

D w/ Monitoring
31500
> D w/o Monitoring
c
21000
©
-
‘©]
F 500
O\O 4
g]
T T T T
TPC-C RocksDB Port-Trimodal

Figure 19: Impact of workload monitoring under static work-
loads.

non-intrusive.

198 2025 USENIX Annual Technical Conference

USENIX Association

	Introduction
	Rack-scale Scheduling and Status Quo
	Key Idea: In-Network Workload Shaping
	Pallas Design
	Design Challenges
	Overview
	Scheduling Policy Generation
	Long-term Workload Change Adaptation
	Short-term Transient Burst Handling

	Implementation
	Evaluation
	Experimental Setup
	Static Workloads
	Synthetic Workloads
	Real Application: RocksDB

	Dynamic Workloads
	Pallas Deep Dive
	Effectiveness of Workload Shaper
	Request Bouncing
	Burst Reaction

	Comparison with Other Solutions

	Discussion
	Related work
	Conclusion
	Algorithm of Workload Mapping Generation
	Overall Request Scheduling
	Switch Dataplane Implementation
	Supplementary Experiments
	Performance under Light-tailed Workload
	Scalability
	Parameter Sensitivity
	Monitoring Overhead
	Impact of Workload Monitoring

